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Abstract

This review surveys the dramatic variations in wake structures and flow tran-
sitions, in addition to body forces, that appear as the motion of bluff bodies
through a fluid occurs increasingly closer to a solid wall. In particular,we dis-
cuss the two cases of bluff bodies translating parallel to solid walls at varying
heights and bluff bodies impacting on solid walls. In the former case, we
highlight the changes to the wake structures as the flow varies from that of
an isolated body to that of a body on or very close to the wall, including the
effects when the body is rotating. For the latter case of an impacting body,
we review the flow structures following impact and their transition to three-
dimensionality. We discuss the issue of whether there is solid–solid contact
between the bluff body and a wall and its importance to body motion.
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1. INTRODUCTION

The flow around generic bluff bodies, such as circular cylinders and spheres, has been studied for
more than a century.The vortex-shedding phenomenon occurring in the wake of these bodies and
the associated fluid–structure interactions have been the topic of several previous contributions
to the Annual Review of Fluid Mechanics: Berger & Wille (1972), Bearman (1984), Oertel (1990),
Williamson (1996b), Williamson & Govardhan (2004), Choi et al. (2008), and Ern et al. (2012).

Building on and extending these reviews, this article focuses on the wake dynamics of generic
bluff bodies when moving relative to, and interacting with, walls in an otherwise quiescent fluid.
Examples of the wakes generated by a cylinder rolling on a wall and a sphere impacting a wall are
shown in Figure 1. These vortical flows bear little resemblance to the wakes of isolated cylinders
and spheres in freestream.

1.1. Practical Significance

A solid body moving along or colliding with a solid surface is a common element relevant to
many industrial and environmental processes, leading to complex energy exchanges. An example
is the resuspension of particles deposited on a surface, such as dust on the ground or sediments
in rivers, by the wake generated by the impact of an object or other particles; see, e.g., Willetts
(1998) and Ziskind (2006) for reviews on this topic (also see Figure 1b). Wear due to particle
impacts on surfaces is a major problem in many areas, including pumping and processing of slurry
flows (Clark 1992), as is the damaging impact of small particles on high-technology equipment in
desert environments (Yildirim et al. 2017). Micrometer-scale solid particles are used in a range of
processes in industries such as metallurgy and pharmaceutical manufacturing, including polishing,
shot peening, sand blasting, and kinetic consolidation processes.At a larger scale,many sports, such
as football, cricket, baseball, snooker, pétanque, bowls, tennis and table tennis, and golf, to name
but a few, involve bluff bodies that move near and on a surface and where impact, rolling, spin,
and bounce are important.

b

a

Figure 1

(a) Mixing induced by a cylinder (red circle) rolling in a quiescent fluid along a wall previously coated with a thin layer of dyed fluid.
Experimental visualization in water at Re = 220. (b) Resuspension of a layer of particles by the normal wall impact of a sphere at
Re = 3,100. Oblique view from above. Panel b reprinted with permission from Eames & Dalziel (1999), copyright 1999 AIP Publishing.
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1.2. The Problem of Solid-to-Solid Contact

Sisyphus, according to Greek mythology, was condemned to eternally repeat the process of rolling
a massive boulder up a hill, only for it to then roll down the hill again. Were we to model this
process by a perfectly smooth sphere and hill within an incompressible Newtonian atmosphere, a
startling result would await—no matter how mightily Sisyphus may strain, the sphere would not
budge, even on a steep slope, due to infinite resistive pressure forces near the point of contact.This
is the so-called rolling paradox (see Section 4.3). However, of course bodies do roll, with the first
scientific study initially published in 1638 by Galileo with his famous rolling-sphere experiments
[Galilei 1914 (1638)].

Galileo was reputed, anecdotally, to have dropped spheres from the Tower of Pisa to show
that acceleration was proportional to gravitational force, independent of mass. However, for a
perfectly smooth ball and ground and an incompressible Newtonian atmosphere, the dropped
spheres would never actually touch the ground, due to the infinite fluid forces in the small gap as
the sphere approaches the solid surface (Brenner 1961). And yet solid-to-solid impacts of dropped
bodies are evidently observed (and heard).

When isolated from a wall, the identical assumptions for a body moving relative to a fluid do
allow for accurate modeling of the body and its wake (e.g., Johnson & Patel 1999,Thompson et al.
1996). Therein lies a major challenge to understanding the seemingly simple problem of a body
in a fluid moving near, or impacting on, a wall.

1.3. Scope of the Review

This review focuses on the flow around the generic bluff bodies of a circular cylinder and a sphere,
showing how the characteristics of the wake change due to the presence of the wall under a va-
riety of translation, rotation, rolling, and impact conditions, as well as the effects of Reynolds
number—see Figure 2 for the setups and important parameters. At present, the results of past in-
vestigations are often scattered throughout various research subfields, not always cross-referenced
and sometimes inaccurate. This review aims to provide an overview of these various studies, rais-
ing important questions still to be fully addressed. The focus is on bodies translating in otherwise
stationary fluids with fixed walls. The issue of fluid–structure interaction, and specifically flow-
induced vibration, is limited to a brief discussion concerning freely rolling bodies. Most of the
referenced results were obtained from experiments in water channels or tanks, or in computational
studies involving direct numerical simulations. Comparisons between the two are shown where
possible.

In order to provide some context, we start with a brief review of the wake transitions of generic
bluff bodies—two-dimensional (2D) cylinders and 3D spheres—at significant distances from a
wall, considering both nonrotating and rotating cases, as well as impulsively arrested bodies.Then,
we map the changes in wakes as the bodies are located increasingly closer to a wall. Finally, we
review the issues of bluff-body contact with a wall and point out future directions on this topic.

2. UNIFORMLY TRANSLATING ISOLATED BLUFF BODIES

2.1. Nonrotating Bodies

The flow past nonrotating cylinders and spheres has been a generic fluid flow problem of contin-
uing interest for more than a century, and the intricate experimental and mathematical details of
the transitions leading toward a fully turbulent wake have been revealed especially over the last
three decades.
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Hopf bifurcation: loss
of stability of a steady
state, giving rise to a
periodic solution, as
the control parameter
is increased

L

Starting
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Stopping
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Re = UD
ν

α = ωD

2U
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ω
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•  Translation
•  Rotation
•  Rolling
•  Sliding

Motion along the walla

•  Impact
•  Rebound

Motion toward
the wall

b

Figure 2

The two types of configurations considered in this review, including the main parameters: (a) a bluff body
translating and rotating along a wall, separated by a gap G; and (b) a body, initially at rest, moving a distance
L before stopping at or near a wall (without or with rebound). In all cases the fluid is stationary with respect
to the wall.

2.1.1. Circular cylinders. The initial transition for a cylinder occurs at Reynolds number
ReC1 ≈ 46 through a Hopf bifurcation from a symmetric pair of attached recirculation bubbles
to a periodic 2D Bénard–von Kármán (BvK) wake (see Figure 3a) (Williamson 1989, Dušek et al.
1994). Here, the Reynolds number is based on the freestream velocity (U ) and the cylinder di-
ameter (D): Re = UD/ν (ν is the kinematic viscosity of the fluid). Upon increase of the Reynolds
number, the wake next undergoes a subcritical (hysteretic) 3D transition at ReC2 ≈ 190 (Barkley
& Henderson 1996; Williamson 1996a,b), which manifests as a sinusoidal distortion of the span-
wise vortex rollers with streamwise vortex structures connecting these. At onset, the spanwise
wavelength (λ) is approximately four cylinder diameters, and this wake instability is commonly
known as mode A. Upon further increase of the Reynolds number, another 3D mode of much
shorter spanwise wavelength (λ ≈ D), mode B, becomes unstable at ReC3 ≈ 260. The remnants
of this mode appear to persist at much higher Reynolds numbers after the wake becomes fully
chaotic (Williamson 1996a,b; Henderson 1997). The characteristic 3D modes are visualized in
Figure 3b. Of interest, equivalent modes have also been recognized in the wakes of other 2D
cylindrical bodies, such as square cylinders (Robichaux et al. 1999) and angled airfoils (He et al.
2017). However, different modes can be important for other cylindrical geometries; e.g., a quasi-
periodic mode is the first transition mode of a normal-flat-plate wake (Thompson et al. 2006b).
When the flow is artificially held steady for Re > ReC1 , a steady 3D perturbation develops for
Re ≥ 100 that resembles the mode E instability occurring naturally when the cylinder rotates at
high rates (see Figure 4a).

2.1.2. Spheres. The sequence of wake modes for a sphere, as Re is increased, is illustrated
in Figure 3c. Consistent with other studies (Ghidersa & Dušek 2000, Tomboulides & Orszag
2000, Thompson et al. 2001), experiments and numerical computations performed by Johnson &
Patel (1999) found that the initial axisymmetric wake undergoes a regular bifurcation through an
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Experiment Simulation
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Cylinder wake
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Re = 100

Sphere wake

c

210 < Re < 270

Top Side
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Side
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Figure 3

(a) Two-dimensional (2D) periodic cylinder wake (experimental dye visualization). (b) 3D structures in the wake of a cylinder (flow is
upward, and the cylinder is at the bottom). (Top row) Mode A; (bottom row) mode B; (left column) dye visualization; (right column)
numerical simulation with tracer particles. Panel b adapted with permission from (left column) Williamson (1996a), copyright 1996
Cambridge University Press; and (right column) Thompson et al. (2006b), copyright 2006 Elsevier. (c) Evolution of the wake of a sphere
with increasing Reynolds number (dye visualization and numerical simulation). Experimental top views in panel c reprinted with
permission from Thompson et al. (2001), copyright 2001 Elsevier.

off-axis shift of the steady recirculating bubble at ReS1 ≈ 210. This results in a double-threaded
wake consisting of a trailing vortex pair, as observed previously for buoyant oil drops (Magarvey
& Bishop 1961a,b). Upon further increase of Re, a second topological transition from the steady
two-threaded wake to a periodic wake occurs at ReS2 ≈ 270 (above references), with the trailing
vortices forming kinks that develop into strongly skewed loops advecting downstream. Compu-
tations by Mittal (1999) and experiments of Brücker (2001) showed that the vortex loops in the
wake lose planar symmetry at ReS3 ≈ 400. These vortex loops are maintained at much higher
Reynolds numbers, despite an increasing chaotic component. Through large-eddy simulations,
Chomaz et al. (1993) and Tomboulides & Orszag (2000) reported fine-scale wake flow structures
for 500 < Re < 1,000; they speculated that these develop from a Kelvin–Helmholtz instability of
the shear layer separating from the sphere. In agreement,Magarvey & Bishop (1961b) experimen-
tally observed a breakdown in periodicity of the hairpin shedding for Re > 600. The same shear
layer instability manifests in a cylinder wake beyond Re ≈ 2,000 (see, e.g., Prasad & Williamson
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Figure 4

(a) Stability diagram for a cylinder rotating at rate α = ωD/(2U ). Panel a adapted with permission from Rao et al. (2015a), copyright
2015 Elsevier. (b) Wake regimes of a rotating sphere, as function of Re and α, based on data collected by Poon et al. (2014) and Dobson
et al. (2014).

1997, Thompson &Hourigan 2005), although, for experiments at least, the onset is dependent on
background turbulence.

2.2. Rotating Bodies

The addition of a body rotation around an axis perpendicular to the flow direction breaks the
symmetry of the configuration and leads to changes in the wake characteristics and transition
behavior. For these cases, a nondimensional rotation rate α can be defined, given by the ratio of
the circumferential speed of the cylinder surface and the flow velocity or, equivalently, the cylinder
translation speed: α = ωD/(2U ), with ω the angular velocity of the body (Figure 2a).

2.2.1. Circular cylinders. Numerical and experimental investigations have characterized and
quantified the wake of a rotating cylinder for rotation rates α ≤ 7 and Reynolds numbers
Re ≤ 400 (see Figure 4a). Various 2D and 3D transitions have been identified and mapped using
linear stability analysis. This effectively extends the previously described results for a nonrotating
cylinder (Section 2.1.1) from the α = 0 axis into the Re–α parameter space. For small rotation rates
(α � 2), the rotation breaks the symmetry of the BvK wake but essentially only perturbs the vor-
tex shedding and transition modes (A and B). However, as the rotation rate approaches α = 2, the
connection points at the cylinder of the upstream and downstream stagnation streamlines essen-
tially merge, significantly altering the flow topology so that shedding is increasingly suppressed.At
even higher rotation rates, these two streamlines join and separate from the surface of the cylinder,
forming a closed region of pure rotation about the cylinder. Given this change to the underlying
base flow with α, the parameter space can be broadly split into two regions, α < 2 and α > 2, as
the parameter map of Figure 4a shows. Two unsteady 2D regimes exist: Mode I shedding occurs
for α � 2 and is characterized by alternate vortex shedding, while mode II shedding only occurs
over a small range of α, at much higher rotation rates that result in single-sided vortex shedding
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Subharmonic: having
half the frequency of
the base flow

(see, e.g., Stojković et al. 2002, 2003; Mittal & Kumar 2003). Two steady flow regimes have also
been identified (Mittal & Kumar 2003, Pralits et al. 2010, Rao et al. 2015a): Steady state I occurs
at lower Re, while steady state II manifests at higher rotation rates beyond the mode II shedding
region. These two states are distinguished by differences in flow features, such as the drag coef-
ficient and the location of stagnation points. At higher Re, a variety of unstable 3D modes with
different spanwise wavelengths are found, including a periodic subharmonic mode (C), which
is also found in other asymmetric bluff body flow configurations, such as curved circular cylin-
ders (rings) or inclined square cylinders (Sheard et al. 2005, Sheard 2011), as well as a steady 3D
mode (E).

2.2.2. Spheres. Previous numerical investigations (Giacobello et al. 2009, Kim 2009, Dobson
et al. 2014, Poon et al. 2014, Rajamuni et al. 2018) of the effects of rotation on the wakes of rigidly
mounted spheres at low Reynolds numbers (Re ≤ 1,000) have revealed considerable wake modi-
fications and even suppression of the vortex shedding, depending on rotation rate. In comparison
with the cylinder case, the wake structure is more strongly affected at lower rotation rates, with
Figure 4b showing that a broad change occurs beyond α � 0.7. Similar to the cylinder, in the ro-
tation centerplane, high rotation causes the streamlines to bend around the sphere, again leading
to an isolated region of corotation near the sphere surface (separatrix regime).

2.3. Impulsively Arrested Bodies

The flow evolution associated with a bluff body impulsively stopping in an unbounded fluid has
received little attention to date.

2.3.1. Circular cylinders. For the case of an arresting cylinder,Tatsuno&Taneda (1971),Wang
& Dalton (1991), and Sheard et al. (2007) showed that, during cylinder motion, a recirculating
wake develops and grows behind the body, consisting of an attached counter-rotating vortex pair.
After the cylinder is impulsively stopped, the momentum in the surrounding fluid carries the
wake over the cylinder, and the shear at the surface induces secondary vortices that pair with the
primary wake vortices as the latter pass the cylinder (Figure 5a). In the subsequent flow evolution,
Sheard et al. (2007) found that, similar to the flow past an arresting sphere discussed below, these
counter-rotating vortex pairs self-propel over a range of sometimes surprising trajectories. For low
Reynolds numbers and short translation distances, the wake vortices move past the cylinder and
continue in the direction of the original cylinder motion. For higher Reynolds numbers, the pairs
deviate outward in circular arcs of increasing curvature, even to the extent that they can actually
collide behind the cylinder. The curvature depends on the circulation balance of the vortex pairs.
At sufficiently large translation distances, a wake instability that would lead to vortex shedding
breaks the reflective symmetry about the centerline of the wake.

2.3.2. Spheres. Leweke et al. (2004b) and Thompson et al. (2007) have investigated the flow
dynamics of an impulsively arrested sphere. For an arrest occurring in isolation (Figure 5b), the
recirculating wake translates toward the arrested sphere before spreading laterally as a vortex ring
in the original upstream direction. A second vortex ring of opposite sign is induced from the
sphere surface and pairs with the primary ring. The vortex ring pair follows a loop trajectory due
to mutual induction, after which the primary ring continues its upstream motion, whereas the
secondary ring is left behind and fades out.
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a

Arresting cylinder

b

Arresting sphere

Experiment Experiment Simulation

Figure 5

(a) Flow around an impulsively arrested cylinder of diameter D previously translating a distance 2D from top to bottom at Re = 500;
experimental dye visualization (left) and numerical simulation with tracer particles (right). Panel a adapted with permission from Sheard
et al. (2007), copyright 2007 AIP Publishing. (b) Experimental dye visualization of the vortex rings developing for an impulsively
arrested sphere after translating a distance 5D at Re = 800.

3. BLUFF BODIES MOVING PARALLEL TO A WALL

3.1. Circular Cylinders

Taneda (1965) was one of the first to visualize the wake of a circular cylinder moving parallel to a
wall. He specifically examined the change to the vortex street as the gap height was reduced from
G/D= 0.6 to 0.1 (seeFigure 2a) atRe= 170.For the smaller gap, it appeared that only a single row
of vortices formed on the side of the cylinder opposite from the wall, with the individual vortices
being unstable and decaying rapidly. The streamwise wavelength of the vortex street increased as
the gap was reduced.

Various authors have since investigated the effect of wall proximity at low Reynolds numbers
through 2D numerical simulations. For example, for nonrotating cylinders,Huang & Sung (2007)
quantified the wake and forces for 0.1 ≤ G/D ≤ 1 and for Re ≤ 600, while Yoon et al. (2010)
considered the effect of gap height at Re = 200. A change from the standard BvK wake to a wake
dominated by one-sided shedding was found to occur atG/D≈ 0.25.Also, the shedding frequency,
f, expressed as the nondimensional Strouhal number, St = f D/U, initially increases slightly as the
gap is reduced toward G/D = 0.5, but it decreases rapidly beyond this point, which is consistent
with Taneda’s (1965) observation of an increased wavelength.The higher blockage to fluid passing
under the cylinder, as the wall gap is reduced, tends to stabilize the wake to the onset of periodic
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Prograde rotation:
rotation in the same
direction as for rolling
without slip

G/D = 2

1

0.5

0.25

0.1

0.01

Figure 6

Two-dimensional wakes (vorticity fields) of cylinders of diameter D translating parallel to a solid wall at
different gaps G, for Re = 200. Figure adapted with permission from Rao et al. (2013), copyright 2013
Elsevier.

shedding, resulting in an increase in the critical Reynolds number from ReC1 = 46 for G/D → ∞
to ReC1 > 100, for gaps below G/D � 0.4.

More recently, Rao et al. (2013, 2015b) simulated the flow past nonrotating and rotating cir-
cular cylinders moving through a fluid at different heights above a no-slip plane boundary for
Re ≤ 400. The series of 2D vorticity fields in Figure 6 shows in more detail the changes to the
flow physics caused by wall proximity. As the gap gets smaller, the increasing blockage reduces the
circulation fed into the lower vortices shedding into the wake, affecting the symmetry between
positive and negative vortices forming the vortex street. In addition, for small gaps, the proxim-
ity of the upper shed vortices to the wall induces opposite-signed secondary vorticity there that
can be advected into the wake to pair with the primary vortices. Thus, the character of the wake
changes as the gap is reduced, and with it the nature of the first transition from steady 2D flow.
Whereas this transition occurs through a Hopf bifurcation to periodic flow at large gaps, a regular
bifurcation leads to steady 3D flow (mode E) for small gaps. Similarly, the onset of the 3D mode
A instability, and indeed whether it is the first 3D instability, is very sensitive to gap size.

Figure 7 summarizes the various transitions and unstable wake modes for cylinders moving
along a wall, as function of Reynolds number and gap size, and also for the cases with simultaneous
forward or backward rotation. Gap size has a strong influence in the range G/D � 0.4; for higher
values, the transition sequence is close to that of an isolated cylinder. Some of the 3D instability
modes are depicted in Figure 8. As for the isolated cylinder, they include a subharmonic mode
(mode C′), as well as a steady 3D mode (E) at different spanwise wavelengths.

3.2. Spheres

Among studies conducted on rotating spheres near boundaries are the works of Zeng et al. (2005)
and Cherukat & McLaughlin (1994), the latter being restricted to the Stokes regime, where a
sphere is moving parallel to a wall at a distance of 0.25 sphere diameters or greater and is free to
rotate. Their results indicate that, in general, any observed induced rotation is in the prograde ro-
tation direction and that this rotation has little effect on the lift and drag forces. The transition to
unsteady flowwith hairpin vortices and loops in the wake occurs earlier than for an isolated sphere,
with the critical Reynolds number decreasing as the distance to the wall is reduced. At the lowest
gap ratio tested (G/D= 0.25), a sudden increase was observed: The wake remained steady beyond
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Lubrication theory:
modeling of the flow
in a thin fluid layer
bounded by solid
surfaces, neglecting
inertial effects
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Figure 7

Parameter space showing the wake modes of a cylinder of diameter D translating near a wall with gap G for (a) forward (normal)
rotation (α = +1), (b) no rotation (α = 0), and (c) backward (reverse) rotation (α = −1). The transition from steady to unsteady flow is
marked by a dashed line. Diagrams on the right are enlargements of the regions outlined in red on the left. Circled numbers refer to the
modes shown in Figure 8. Figure adapted with permission from Rao et al. (2015b), copyright 2015 Elsevier.

Re = 300. Zeng et al. (2005) related this behavior to the competition between asymmetry (pro-
moting early shedding) and viscous effects (delaying the transition), both induced by the presence
of the wall.

The behavior of the lift and drag coefficients of spheres translating close to a wall was in-
vestigated by Zeng et al. (2009) at moderate Reynolds numbers covering the steady regimes
(Re< 300). Force coefficients for spheres are defined in the standard way through F = CF · 1

2ρU
2 ·

π

4D
2, where F is the corresponding force and ρ the fluid density.These force coefficients, as a func-

tion of Reynolds number and gap ratio, are summarized inFigure 9 for the case of pure translation,
as predicted by Zeng et al. (2009) and others. The isolated sphere drag variation, together with
predictions of lubrication theory, is also provided for comparison. Orders-of-magnitude changes
in both the drag and lift coefficients are observed as the Reynolds number and gap ratio are varied,
the latter showing the profound effect of the wall.Note that the lift remains finite for all parameter

356 Thompson • Leweke • Hourigan

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 2

02
1.

53
:3

47
-3

76
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

20
01

:8
00

3:
44

06
:9

00
:4

8a
a:

74
9c

:4
78

4:
66

95
 o

n 
01

/0
7/

21
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 



a b

c

d

Mode C' (α = 0)1 Mode D (α = –1)2

Mode E (α = + 1)3

Mode E (α = –1)4

Figure 8

Three-dimensional instability modes of the wake of a cylinder of diameter D translating parallel to a wall, visualized by isosurfaces of
positive and negative streamwise vorticity. (a) Subharmonic mode C′ with a spanwise wavelength λ/D = 1.35 for the sliding cylinder
(α = 0). (b) Periodic mode D with λ/D = 2.6 for the cylinder in reverse rotation (α = −1). (c) Steady mode E with λ/D = 11 for the
cylinder in normal rotation (α = +1). (d) Steady mode E with λ/D = 2.75 for the cylinder in reverse rotation (α = −1). Circled
numbers refer to the locations in the parameter space shown in Figure 7. Figure adapted with permission from Rao et al. (2015b),
copyright 2015 Elsevier.

values, whereas the drag diverges logarithmically and as Re−1 for vanishing gap size and Reynolds
number, respectively.

4. BLUFF BODIES ROLLING ALONG A WALL

4.1. Rolling Circular Cylinders

As discussed in Section 3.1, the immediate proximity of a wall suppresses the passage of fluid
underneath the cylinder, leading to single-sided vortex shedding into the wake. In turn, the prox-
imity to the wall of these shed vortices induces secondary wall vorticity, which separates and rolls
up into weaker vortex structures that pair with the primary vortices to form the wake. The addi-
tion of prograde (normal) rolling to the scenario has two main effects: It increases the circulation
fed into the upper primary vortices (because of the increased velocity gradient at the cylinder
surface), and it also leads to separation at a smaller angle from the front of the cylinder, so that
these vortices advect into the wake further away from the wall. These two effects affect the mag-
nitude of the secondary wall vorticity generated and so influence the structure and stability of the
wake. The details were explored experimentally and numerically by Stewart et al. (2006, 2010b)
for cylinders moving at constant speed with a very small fixed gap (G/D= 0.005) and for Re≤ 350.
The transition map as a function of Reynolds number and rotation rate is given in Figure 10a.
For a nonrotating (sliding) cylinder, the 2D flow remains steady up to Re = 165, beyond which
periodic flow is observed, where opposite-signed vortex structures combine and self-propel away
from the wall. Linear stability analysis was used to show that the flow becomes 3D directly from
steady flow at Re = 70.5. This is unlike the situation for an isolated cylinder, where transition to
3D flow occurs from a periodic wake. The transition Reynolds numbers vary with the rotation
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Figure 9

(a) Drag coefficient CD and (b) lift coefficient CL for a nonrotating sphere of diameter D moving parallel to a solid wall in a quiescent
fluid, as a function of Reynolds number Re (top) and of gap size G (bottom). The limits for Stokes flow at large gaps and for lubrication at
vanishing gaps (Goldman et al. 1967) are shown as dashed lines. Diagrams were computed using the correlations proposed by Zeng
et al. (2009) based on a survey of various experimental and numerical studies.

rate and increase with decreasing α, and vice versa. Water-tunnel wake visualizations are in good
agreement with the numerical simulation predictions, as can be seen, e.g., for the forward- and
reverse-rolling cases shown in Figure 11. More recently, Houdroge et al. (2017) examined the
onset of three-dimensionality of a cylinder rolling freely along a wall without slip (α = 1), again
through experiments and numerical simulation. Figure 12 shows that three-dimensionality can
strongly distort the wake structures after a few shedding cycles at moderate Reynolds numbers,
and additionally that the influence of the free ends of the cylinder propagates rapidly inward along
the span.

4.2. Rolling Spheres

While maintaining some of the flow physics governing rolling-cylinder wakes, there are also some
important differences for rolling spheres. In particular, a rolling sphere touches the surface at a
single point rather than along a line, which allows the fluid to pass around the sides of the sphere
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Figure 10

Wake regimes for (a) a cylinder and (b) a sphere of diameter D translating along a wall and rotating at different rates, α. The gap size is
G/D = 0.005. Diagrams based on results from numerical simulations and stability analyses by Stewart et al. (2010a,b) and Rao et al.
(2011, 2012).

as the gap is reduced. For this reason, wall proximity has a reduced influence in modifying the
wake from that of the isolated sphere, compared to the cylinder case. This problem has been ex-
plored by Stewart et al. (2008, 2010a) and Rao et al. (2012) for the flow around spheres translating
at constant speed and rotating very close to a wall at Reynolds numbers up to several hundred,
covering both steady and unsteady regimes. The gap ratio was chosen to be sufficiently small
(G/D = 0.005), so that the wake flow structures are not sensitive to the gap, even though the lift
and drag forces are, as discussed below in Section 4.3. The effect of the sign and magnitude of the
rotation rate on the wake characteristics up to Re = 350 is shown in Figure 10b.

Re = 450Re = 400

Reverse rolling

Experiment Simulation

Normal rolling
Re = 90Re = 80a

b

Figure 11

Unsteady two-dimensional wake of a cylinder translating on a wall, for (a) normal rolling (α = +1) and (b) reverse rolling (α = −1):
(left) experimental dye visualizations in a water channel equipped with a moving floor; (right) vorticity fields from numerical simulation.
Figure adapted with permission from Stewart (2008).
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Vortex-induced
vibrations: body
oscillations caused by
time-dependent fluid
forces due to vortex
shedding

Experiment

a

Simulation

b

Figure 12

Development of three-dimensionality in the wake of a freely rolling cylinder of diameter D at Re = 160. (a) Experimental dye
visualization of the first three shedding cycles after an impulsive start from rest. The cylinder is 47D long, with free ends. (b) Isosurface
of the Q-criterion function (Hunt et al. 1988) from numerical simulation, showing vortical structures during three consecutive shedding
cycles after the onset of three-dimensional flow. The cylinder length is 54D, with periodic boundary conditions. Panel b adapted with
permission from Houdroge et al. (2017), copyright 2017 Cambridge University Press.

For α > 0 (prograde rolling), a compact zone of recirculating fluid is formed and the unsteady
flow is marked by the shedding of hairpin vortices analogous to the periodic wake of an isolated
sphere. However, for α < 0 (retrograde rolling), a streamwise vortex pair appears in the wake, and
as Re is increased further the wake undergoes a transition to an antisymmetric mode.A comparison
between these two wake states is given in Figure 13.

For the forward-rolling sphere with α = 1, the wake remains attached and steady at low
Reynolds numbers (Stewart et al. 2010a); it is analogous to that of an isolated sphere, i.e., a double-
threaded wake consisting of a counter-rotating vortex pair. Transition to unsteady, periodic, and
symmetric flow occurs at Re � 139, as shown through direct numerical simulations by Rao et al.
(2012), who also identified a second transition at Re � 192 to unsteady, asymmetrical flow, where
the wake exhibits oscillations in the lateral directions. Both transitions were found to be supercrit-
ical (nonhysteretic). Visualizations of the symmetric and asymmetric unsteady wakes are shown in
Figure 14.

In general, when a body is not forced to move at a constant speed, e.g., in cases where it
is rolling down a slope driven by gravity, unsteadiness in its wake leads to oscillations (vibra-
tions) of its trajectory. As well as sphere oscillations in the downslope direction, there is also con-
siderable movement across the slope. The sidebar titled Vortex-Induced Vibrations of Rolling
Bodies gives a few brief details concerning this topic, which is beyond the scope of the present
review.
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Normal rolling

a

Reverse rolling

Experiment Simulation

b

Figure 13

Unsteady wake of a sphere translating on a wall, for (a) normal rolling (α = +1) and (b) reverse rolling (α = −1). (Left) Experimental
dye visualizations (top view) at Re = 200 in a water channel equipped with a moving floor. Visualizations reprinted with permission
from Stewart et al. (2008), copyright 2008 AIP Publishing. (Right) Vortical structures (oblique view) from numerical simulation,
visualized by the method proposed by Jeong & Hussain (1995), at Re = 200 (top) and Re = 300 (bottom). Simulation results adapted with
permission from Stewart et al. (2010a), copyright 2010 Cambridge University Press.

Theoretical analysis has been combined with laboratory experiments to investigate the forces
acting on a sphere rolling freely down an incline (Carty 1957, Garde & Sethuraman 1969, Jan
& Shen 1995, Verekar & Arakeri 2010). The sphere eventually reaches a terminal velocity from
which an effective drag coefficient (C′

D) can be calculated. Note that for a sphere rolling down
a slope without slip, this effective C′

D is given by the sum of the standard drag coefficient and
the fluid torque coefficient. The data are presented in the composite plot of Figure 15a. They

a

b

Re = 190

Re = 230

Re = 415

c

Experiment Simulation

Figure 14

Wake of a sphere rolling in a straight line along a wall at Re = 190 (a), Re = 230 (b), and Re = 415 (c), seen from above: experimental dye
visualization (left) and numerical simulation with tracer particles (right). A bifurcation breaking the initial planar symmetry occurs at
Re = 192, between panels a and b. Figure adapted with permission from Rao et al. (2012), copyright 2012 Cambridge University Press.
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VORTEX-INDUCED VIBRATIONS OF ROLLING BODIES

Vortex-induced vibration (VIV) of rotating bodies is also influenced by the presence of a wall compared to isolated
cases (Bourguet & Lo Jacono 2014, Zhao et al. 2018), along with changes to the potential added mass. For a body
accelerating in a fluid, the fluid force (drag) resisting this acceleration can be expressed as a mass that is added
to the body mass in the equations for the body motion. The added mass coefficient is the ratio of this additional
mass to the fluid mass displaced by the body. For a cylinder and a sphere, this coefficient increases from 1 and
1/2, respectively, at infinity, to approximately 2.29 and 0.58, respectively, at the wall for motion parallel to the
wall, independent of rotation (Brennen 1982). These increases represent an added resistance to acceleration of
the bodies, which should act to mitigate VIV to some extent. However, there are also dramatic changes in the
wake structures, for both rolling cylinders (Houdroge et al. 2020) and rolling spheres (F.Y. Houdroge, J. Zhao,
T. Leweke, K. Hourigan & M.C. Thompson, submitted manuscript), at least in the low–Reynolds number range.
These bodies are found to undergo increasing VIV about their mean rolling speed with decreasing ratio of body
and fluid densities; interestingly, spheres have considerably smaller vibration amplitudes than cylinders.

show that, for low Reynolds numbers, the drag is significantly greater than for a sphere in an
unbounded flow (compare with Figure 9a), but it also appears to vary as Re−1 up to Re ≈ 100.
Although Carty (1957) and Garde & Sethuraman (1969) followed a similar experimental method-
ology, drag coefficients calculated in the latter study are up to twice as large as those from the for-
mer. Garde & Sethuraman (1969) related this difference to the longer experimental flume used in
their experiments, which led to more accurate timing and therefore velocity calculations, although
their graph has a significant amount of scatter. For Re ≥ 5, the results of Jan & Shen (1995) are
broadly consistent with, although generally well above, the observations of Carty (1957), and their

0.1
10,0001,0001001010.10.01
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1,000

10,000
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Figure 15

Mean effective drag coefficient C′
D (including torque) of a sphere rolling down an incline, as function of Reynolds number Re.

(a) Collection of various experimental data. (b) Close-up of the current measurements (F.Y. Houdroge, J. Zhao, T. Leweke, K. Hourigan
& M.C. Thompson, submitted manuscript), showing an increase of the drag with decreasing relative surface roughness (increasing
diameter) of the sphere.
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Figure 16

Drag coefficient CD for rolling bodies of diameter D as function of gap size G from direct numerical simulation. (a) Cylinder at
Re = 50. The line shows the prediction from lubrication theory: CD = 4π/[Re(G/D)1/2]. Panel a adapted with permission from
Houdroge et al. (2020). (b) Sphere at Re = 100. The lines represent scalings in line with lubrication theory: CD ∼ [ln (D/G) + const.].

data show considerable scatter, too. It is also unclear why they do not present any values in the
100 < Re < 1,000 range.

4.3. The Rolling Paradox

Many careful experimental and numerical studies have been undertaken concerning the dynamics
of rolling/sliding cylinders and spheres in close proximity to a wall. For the numerical studies, in
particular, a finite gap has been maintained between the cylinder and the wall due to the problem
of a mesh singularity arising at zero gap, and also to keep a reasonable computational time step,
since the respective timescales governing the gap flow and the global wake dynamics become in-
creasingly separated. For small gaps (G/D� 0.01), vortex formation and shedding is relatively in-
dependent of the gap size, but the force coefficients are strongly affected, as shown by the examples
in Figure 16 (see also Figure 9). The so-called rolling paradox arises from theoretical/analytical
results concerning the flow in the gap region using lubrication theory. This theory was applied
to the rolling cylinder and rolling sphere problems by, e.g., Merlen & Frankiewicz (2011) and
Goldman et al. (1967), respectively. They predicted that, as the gap size approaches zero, the drag
force on the body diverges as (D/G)1/2 for the cylinder and as ln (D/G) for the sphere, for any
combination of sliding and rolling, due to the generation of a pressure peak diverging to positive
infinity in front of the body, and another peak diverging to negative infinity behind it. This im-
plies that a cylinder or sphere in contact with a solid surface would be impossible to move along
this surface, which is contrary to common observation, and that any rolling or sliding motion
along the wall would involve a liquid film of finite thickness between the two, i.e., the absence
of solid-to-solid contact. Goldman et al. (1967) calculated that the gap size compatible with the
drag coefficients of a rolling sphere determined experimentally by Carty (1957) (Figure 15a)
would be of the order of atomic dimensions, which is well outside the validity domain of the the-
ory. Goldman et al. (1967) put forth six points of discussion in an attempt to explain the discrep-
ancy between the idealized model provided by lubrication theory and experimental data. They in-
clude the roughness of the sphere or wall, compressibility effects and cavitation linked to the large
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negative pressures encountered, breakdown of the continuity assumption at very small gaps, iner-
tial and non-Newtonian effects, and deformations of the sphere by the high pressure gradient.

Surface roughness was dismissed by Goldman et al. (1967), since Carty’s (1957) drag data ap-
parently did not show differences between the various spheres of different roughnesses used. It
appears that this conclusion is not clearly justified by the data (Figure 15). Specifically, the data
points are not frequent enough to allow for differentiation, and the results are presented on a
log–log plot that masks any such trends. (On such a log–log plot with sparse points, a variation in
drag coefficient of 100% is essentially not discernible!) More recent experiments appear to show
that different relative surface roughnesses do in fact lead to different drag coefficient variations
with macroscopic Reynolds number, as seen in Figure 15b. By providing an effective average gap,
the roughness of the body (or wall) appears to be a determining factor for its motion along a wall.
Interestingly, the drag prediction from direct numerical simulation for smooth rolling spheres at
higher Reynolds number (Figure 16b) appears to approach the experimentally observed values
given by Carty (1957) (Figure 15), as the gap ratio approaches expected relative roughness ratios
(δ/D ∼ 10−6–10−7, where δ is the mean asperity height).

Roughness effects were further investigated by Smart et al. (1993), who extended the work of
Goldman et al. (1967) by proposing that roughness elements can in fact lead to physical contact
with the plane when the separation distance between the surfaces is of the order of the roughness
height, and that the plane will then exert a nonhydrodynamic force and torque on the sphere.
Their research gave quantitative agreement between measured translational and rotational veloc-
ities and their theory for small inclination angles of the plane; however, their data at high angles
showed a greater discrepancy, in line with a larger apparent gap than the one considered. King
& Leighton (1997), Galvin et al. (2001), and Zhao et al. (2002) argued that rather than experi-
encing a single surface roughness and separation distance, the sphere has two scales of roughness:
small bumps that support the particle at rest and at low angles, and larger roughness elements
distributed sparsely on the surface that dominate the separation at higher angles. Galvin et al.
(2001) and Zhao et al. (2002) developed a theoretical model of this phenomenon and tested it
experimentally, confirming that, at low angles, the sphere is in contact with the wall via the small
asperities, whereas at high angles the large asperities may cause the sphere to lift off the wall and
move without continuous contact.

Although a smooth bump, no matter the radius, will induce an unlimited pressure force as the
gap between it and a smooth surface decreases, a roughness element or asperity of small enough
dimension can decrease the gap to molecular dimension, whereby contact can be said to occur
(Smart & Leighton 1989, Lecoq et al. 2004).The observation that in practice contact does occur is
therefore a consequence of physical considerations outside the assumptions of surface smoothness,
fluid continuum, and incompressibility, such as roughness closing the gap to the order of the fluid
molecular dimension, or ultimately other short-range interactions like van der Waals forces. The
precise details of how solid-to-solid contact occurs, which are essential for an understanding of
the resistive forces due to contact, the effective hydrodynamic gap, and the rolling speed of bluff
bodies, are presently still not entirely clear.

When the body is surrounded by a liquid, cavitation can occur for small gaps, when the diverg-
ing negative pressure decreases below the vapor pressure, an effect already investigated by Taylor
(1963) for lubrication flow. Merlen & Frankiewicz (2011) and Prokunin (2003) have analyzed the
cases of cylinders and spheres rolling along a plane wall. When cavitation appears, it eliminates
the large negative pressure peak behind the body, but not the positive peak ahead of it. This asym-
metry results in a net lift force that can push the body further away from the surface, while at the
same time maintaining a large drag force. (Similarly, fluid compressibility modifies the pressure
distribution near contact but infinite pressures still arise from zero gap.) Experiments by Seddon
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Image vortices:
virtual vortices located
symmetrically with
respect to a surface,
having the same effect
as the boundary
condition of zero
normal velocity at this
surface

Cylinder Sphere

Forward rotation Backward rotation

a b c

Forward rotation

Cavitation

Figure 17

Experimental visualization of cavitation bubbles in the gap region of bluff bodies moving along a wall in Stokes flow. Views from below
through the transparent wall. All bodies move to the left. (a) Cylinder in forward rotation (Re = 1.2, α ≈ 1). (b) Cylinder in backward
rotation (Re = 2.9, α ≈ −0.2). Panels a and b adapted with permission from Seddon & Mullin (2006), copyright 2006 AIP Publishing.
(c) Sphere in forward rotation (Re = 0.5, α ≈ 0.3). Panel c adapted with permission from Ashmore et al. (2005), copyright 2005
American Physical Society.

& Mullin (2006) on cylinders moving close to a wall in a highly viscous liquid have shown that
cavitation appears in the gap region in the form of a periodic array of vapor bubbles (Figure 17a),
whereas Prokunin (2004) and Ashmore et al. (2005) visualized a single cavitation bubble for the
case of a rolling sphere (Figure 17b).

5. BLUFF BODIES IMPACTING ON A WALL

In this section, we are chiefly concerned with the flow structures arising from a rigid body im-
pacting on a rigid wall, and not the elastic or plastic deformations that may occur in the solid
structures (for the latter, see, e.g., Yildirim et al. 2017). In this case, the initial stage of the wake
evolution is clearly related to those of impulsively arrested bodies discussed in Section 2.3. In ad-
dition, in a broader sense, the later wake evolution involves secondary vorticity generation from
the proximity of primary vortices to the wall, which subsequently leads to vortex pair formation
and self-propulsion away from the body, showing similarities with the wake evolution of rolling
or sliding bodies discussed in Section 4.

5.1. Impacting Cylinders

Leweke et al. (2008) presented results from experiments and simulations on the flow around a
circular cylinder upon impact with a solid wall. At low Reynolds numbers, when impacting nor-
mally to the wall, the attached counter-rotating vortices that form during the pre-impact motion
of the cylinder overtake it on impact, one on each side, and then initially move outward along
the wall due to the influence of their image vortices. Subsequently, the vortices experience a weak
rebound associated with secondary vorticity generated at both the cylinder and wall (Figure 18a).
For higher Reynolds numbers, the secondary vorticity generated rolls up into discrete secondary
vortices that orbit the primary vortices and undergo a 3D elliptic instability (Figure 19a), a phe-
nomenon known to occur in strained vortical flows (Kerswell 2002). Beyond a Reynolds number
of a few hundred, this process leads to breakdown of the vortex system into small-scale structures.
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Normal impact Oblique impact

Experiment Simulation Experiment Simulation

τ = 0

τ = 2

τ = 5

τ = 15

a b

Figure 18

Flow generated by a circular cylinder of diameter D translating a distance L before impacting on a solid wall at Re = 200, with L/D = 4.
Experimental dye visualization and numerical vorticity fields. (a) Normal impact, and (b) oblique impact at θ = 57°. Nondimensional
time τ = tU/D is counted from the moment of impact. Figure adapted with permission from Leweke et al. (2008), copyright 2008
Elsevier.

Cylinder Sphere

Experiment Simulation

a b

Figure 19

Three-dimensional instability of the flow generated by the impact of a body of diameter D on a wall after translating a distance L.
(a) Cylinder at Re = 400 for L/D = 5. Isosurfaces of vorticity from numerical simulation, showing an elliptic instability of the secondary
vortex. Panel a adapted with permission from Thompson et al. (2006a), copyright 2006 Elsevier. (b) Sphere for L/D = 5. Dye
visualization in water at Re = 1,500 (left) and isocontours of radial vorticity from simulation at Re = 1,200 (right), showing the
centrifugal instability of the primary vortex. Panel b reprinted with permission from Leweke et al. (2004b), copyright 2004 AIP
Publishing.
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Side views

SimulationExperiment SimulationExperiment

a τ = 0

τ = 2

τ = 5

τ = 16

Bottom view

b

Experiment

τ = 20

Figure 20

Wall impact of a sphere of diameter D after translating a distance L at Re = 800, with L/D = 5. (a) Side views with experimental dye
visualizations and numerical vorticity fields. Panel a adapted with permission from Leweke et al. (2004b), copyright 2004 AIP
Publishing. (b) Bottom view: experimental dye visualization. Panel b reprinted with permission from Leweke et al. (2004a), copyright
2004 AIP Publishing.

This flow behavior is similar to the case of a counter-rotating vortex pair impinging on a solid
wall (Leweke et al. 2016).

Oblique cylinder impacts have also been examined (Figure 18b). Not surprisingly, this asym-
metry leads to different flows generated on each side of the cylinder. The vortical structures that
develop on the side beneath the cylinder path appear similar to those for the normal impact case,
while generation of secondary vorticity at the wall on the opposite side decreases with growing
impact angle, leading to changes in the pair formation process. For higher-impact angles, the
source of secondary vorticity generation is mostly restricted to the cylinder surface, resulting in
the formation of a vortex dipole that, through self-induction, leads to rebound and self-advection
of the primary vortex to greater heights than occurs for the normal impact.

5.2. Impacting Spheres

The flow generated by the normal impact of a sphere on a wall bears similarities with the cylin-
der case. The recirculation zone behind the moving sphere here takes the form of a vortex ring.
On impact, this ring overtakes the sphere, leading again to the generation of secondary vortic-
ity at the sphere surface and at the wall, which separates and wraps around the primary ring
(Figure 20). At low Reynolds numbers, the flow remains axisymmetric at all times, whereas for
Re� 1,000, an instability develops in the azimuthal direction of the primary vortex ring, as seen in
Figure 19b. Leweke et al. (2006) endeavored to gain an understanding of the flow physics involved
in this instability. They found that the flow structures that developed were consistent with a cen-
trifugal instability of the primary vortex ring core surrounded by secondary vorticity of opposite
sign drawn up from the wall. Both the growth rate and azimuthal mode numbers, predicted from
idealized centrifugal instability theory based on the local velocity profile, show good agreement
with those observed in the experiments, simulations, and linear stability analysis of the frozen flow
state. Since the cross section of the primary ring becomes elliptical after the impact, the stabil-
ity of the ring was also tested against elliptic instability. Although the predicted azimuthal mode
numbers matched well, the predicted growth rates were negative.
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The dynamics bears resemblance to the related case of a vortex ring impacting on a wall, stud-
ied byWalker et al. (1987), Lim (1989), Lim et al. (1991), Orlandi & Verzicco (1993), Swearingen
et al. (2000), and Masuda et al. (2012). In both configurations, the primary vortex ring draws up
secondary vorticity generated as it nears the wall, and then the ring structure expands radially,
leading to qualitatively similar vorticity patterns. However, the isolated impacting ring becomes
unstable through fragmentation of the secondary vorticity into quasi-discrete vortices when the
Reynolds number is sufficiently large. This secondary vortex fragmentation has a relatively low
azimuthal wavenumber (∼6 waves along the ring perimeter, compared to ∼20 for the sphere im-
pact in Figure 19b) and involves self- and mutual induction from the primary vortex, as discussed
in the above articles. Of interest, direct simulations of vortex ring impact have indicated that this
fragmentation process arrests relatively quickly, and subsequently a shorter-wavelength instability
manifests, possibly attributable to the same centrifugal mechanism causing ring breakup for the
sphere impact.

Comparisons between circular cylinder impact and normal sphere impact have revealed im-
portant differences in the developed wakes. The vortex stretching of the primary vortex as the
ring expands radially is not present for the cylinder impact, and this leads to a reduction in core
size and accelerated vorticity cross-diffusion in the axisymmetric geometry. These effects delay
the onset of 3D instabilities in the vortical flows generated upon impact of a spherical particle
with a wall, in comparison to the 2D counterpart.

In comparison with the flow generated by a body arrested in isolation (Section 2.3), the pres-
ence of the wall has two main effects: It restricts and modifies the trajectories of the primary
vortices, through induction from the image vortices representing the boundary condition of van-
ishing normal flow velocity at the wall, and it is a further source of secondary vorticity. Together,
these effects can produce vortex configurations not found for freely arresting bodies, e.g., where
the secondary vorticity wraps around the primary vortex in a band (Figures 18a and 20a) instead
of forming a discrete concentrated vortex (Figure 5), which can lead to different types of 3D
instability (centrifugal instability) at higher Reynolds numbers.

5.3. Rebounding Bluff Bodies

The configuration involving a spherical particle in a viscous fluid rebounding from a solid surface
after a normal collision has been investigated in numerous studies including analytical/numerical
work by Davis et al. (1986), Lian et al. (1996), Ardekani & Rangel (2008), Li et al. (2012), and
Brändle de Motta et al. (2013), as well as in experiments by Gondret et al. (1999, 2002), Joseph
et al. (2001), and Ruiz-Angulo &Hunt (2010).Most of these studies focused on the flow structure
around the point and near the time of impact, and on the determination of the coefficient of
restitution (ε), given by the ratio of rebound velocity to particle impact velocity. Few studies have
considered the vortical structures in amore extended region and time interval around the collision.
The visualization by Thompson et al. (2007) and simulations by Ardekani & Rangel (2008) show
that the primary vortex ring in the wake of the approaching sphere is left behind after the rebound
and exhibits dynamics similar to that for a sphere with no rebound (compare Figures 20 and
21a,b).

The coefficient of restitution was found to depend on the nondimensional Stokes number,
Stk = (1/9)(ρp/ρf)Re, where ρp and ρf are the particle and fluid densities, respectively, and Re
is the particle Reynolds number at impact, with only a weak dependence on the elastic prop-
erties of the material ( Joseph et al. 2001). This parameter compares particle inertia to viscous
effects; according to Legendre et al. (2005), the effect of added mass should also be included:
Stk∗ = (1/9)(ρp/ρf + Cm)Re, with Cm the added mass coefficient. No rebound is found to occur
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a b t = 0 t = 2t0

t = 3t0t = t0

εdc = 0 εdc = 1 εdc = 0 εdc = 1

c

Stk*
100 101 102 103 104 105 106

1.0

0.8

0.6

0.4

0.2

0

εdc

ε

Figure 21

Rebound of a sphere of diameter D from a wall after impact from a distance L. (a) Forced rebound for L/D = 5, Re = 800, and
dry-collision coefficient of restitution εdc = 1. Dye visualization in water. Panel a reprinted with permission from Thompson et al.
(2007), copyright 2007 Cambridge University Press. (b) Rebound after a free fall under gravity for L/D = 5 and Re = 865 (at impact).
Vorticity contours from numerical simulations, comparing the cases of plastic (εdc = 0; left half of the images) and elastic (εdc = 1; right
half ) collisions. The timescale is given by t0 = 0.8

√
D/g (g is gravitational acceleration). (c) Normalized coefficient of restitution ε/εdc

as function of modified Stokes number Stk∗, collected from various studies. Panels b, c adapted with permission from Ardekani &
Rangel (2008), copyright 2008 Cambridge University Press.

below a critical value of Stk∗ ≈ 10, and the coefficient of restitution approaches that for a dry
collision (εdc) for Stk∗ � 1,000, as shown in Figure 21c.

As for rolling bodies discussed in Sections 4.2 and 4.3 above, the issue of whether there is solid-
to-solid contact, or whether lubrication forces prevent this contact, is relevant also to a bluff-body
impact and rebound. In the study by Davis et al. (1986), the pressure forces in the viscous liquid
lubrication film between the particle and the wall during the collision were found to be sufficiently
large to cause the particles to deform elastically and rebound. The Stokes number dependence
has been attributed to the drainage of the lubrication film. In this model of elastohydrodynamic
collisions based on lubrication theory, the two solids never touch.

Effects that lead to a breakdown of the lubrication approach include, again, surface roughness
(Smart & Leighton 1989). Davis (1987) already suggested that when the gap between the sur-
faces becomes equal to the size of the largest surface roughness element, solid-to-solid contact of
the roughness bumps could occur due to the discrete molecular nature of the fluid or attractive
London–van der Waals forces. More recently, Birwa et al. (2018) studied the collision between
spheres and a wall in a viscous fluid, focusing on the question of solid-to-solid contact. For Stokes
numbers below the rebound threshold, the lubrication film forces were found to decelerate the
spheres to zero velocity before reaching the wall. As soon as rebound occurred for increasing
Stokes numbers, contact between the two solids was systematically detected.The explanation pro-
vided was that the lubrication film thickness needed to produce the force for stopping the sphere
motion is significantly smaller than the roughness of the particle or the wall, and therefore contact
is made via the roughness elements.

6. CONCLUDING REMARKS

In this review, we discuss the effect of a wall on the wake structures and transitions of bluff bodies
moving relative to the wall. The review is restricted to the generic 2D and 3D bluff bodies—the
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INTERACTION WITH A FREE SURFACE

There are many important interactions that take place at free, or nearly free, surfaces, such as those in oceans,
lakes, and rivers, as well as industrial processes involving risers, bridge piers, mixing vessels, and bioreactors. Several
studies have provided valuable insights into the surprising wake structures and free-surface response for nonrotating
submerged or semisubmerged cylinders or spheres (Sheridan et al. 1997; Kawamura et al. 2002; Chaplin & Teigen
2003; Reichl et al. 2003, 2005; Koo et al. 2004; Vlachos & Tellionis 2008; Shao et al. 2013; Sareen et al. 2018).
Far from being a passive boundary, the free surface, when distorted, becomes a rich source of vorticity that can
remarkably change the wake of a bluff body (Brøns et al. 2014, Terrington et al. 2020). However, the effects of the
interface on the force distribution on the body, vortex generation and turbulence structures, and air–water interface
structures still require much further study.

circular cylinder and the sphere, respectively—and to the ambient fluid being at rest relative to
the wall. This excludes the class of flows for which boundary layers form due to the fluid flow
along the wall and where the bluff body is fixed to the wall, such as is typical in wind engineering
applications. The simplified flow allows a clearer analysis of the direct effect that the wall itself has
on the wakes. We also consider only interactions with a rigid wall; the sidebar titled Interaction
with a Free Surface briefly addresses the configuration of bluff bodies placed near a fluid–fluid
interface.

SUMMARY POINTS

1. Proximity to a wall changes the bluff-body wake structures and transitions significantly.
For example, the strong absolute instability causing Bénard–von Kármán vortex shed-
ding for an isolated cylinder becomes much weaker in the immediate presence of a wall,
with a predominately single-sided wake, and a steady 3D transition mode appears at
higher Reynolds numbers.

2. Flow underneath a cylinder or sphere is restricted as the body is moved closer to the wall,
which effectively eliminates shedding of near-wall vortices. However, the proximity of
the upper shed vortices to the wall leads to secondary vorticity generation there, which
can roll up into discrete structures forming pairs with the upper vortex. These pairs
propagate away from the wall, causing a significant spread of the wake. This mechanism
dominates the flow dynamics for the cylinder case, but is less important for a sphere.

3. For small gaps (less than 1% of the body diameter), the gap flow effectively becomes un-
coupled from the global flow around rolling bodies, hence simulations of rolling bodies
with small imposed gaps produce wake dynamics relatively insensitive to the gap ratio.
However, this is not true for the lift and especially the drag forces, which are very sensi-
tive to gap size.

4. The flow dynamics for bluff bodies impacting a surface is governed by the starting dis-
tance and the Reynolds number. A vortex system is formed from the initial wake (vor-
tex pair for the cylinder, vortex ring for the sphere) and secondary wall vorticity, which
propagates away from the impact point. At higher Reynolds numbers, it becomes three-
dimensionally unstable through an elliptic instability in the case of a cylinder, and a
centrifugal-type instability for the sphere.
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5. For freely rolling or sliding bodies, surface roughness appears to be a key element, lead-
ing to an effective contact between the two solids, while at the same time providing an
effective finite gap. Predicted drag coefficients for smooth spheres rolling without slip
are similar to those observed in experiments for a roughness height on the order of the
chosen gap size. However, this requires further investigation.

FUTURE ISSUES

1. Studies of the wakes of sliding and rolling bodies of other geometries (elliptical cylinders,
cubes) and the combined wakes of multiple bodies, particularly spheres, in motion near
walls will extend current knowledge to a broader set of applications.

2. Simulations of rolling/sliding bodies near surfaces at higher Reynolds numbers are re-
quired to examine turbulent transition and fully turbulent wakes.

3. The effects of body rotation, as well as wall and body material elasticity, on the wakes of
impacting bluff bodies are largely unexplored.

4. The details of the physics of solid-to-solid contact due to surface roughness need to be
further addressed, ideally through a combination of careful experiments, detailed nu-
merical simulations resolving the flow near the gap, and theoretical analysis.

5. How bluff bodies interact with free surfaces and multifluid interfaces is yet to be inves-
tigated in detail.
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