Contents

Foreword

BRAZA, M. AND HOURIGAN, K., Unsteady separation in fluid-structure interaction — I .. 1

Special Issue Articles

PROTHIN, S., DHERIDI, H. AND BILLARD, J.-Y., Coherent and turbulent process analysis of the effects of a longitudinal vortex on boundary layer detachment on a NACA0015 foil .. 2

DEKKER, E., BRAZA, M., CID, E., CAZIN, S., MICHAELIS, D. AND DEGOUET, C., Investigation of the three-dimensional turbulent near-wake structure past a flat plate by tomographic PIV at high Reynolds number .. 21

BRÜCKER, C. AND WEIDNER, C., Influence of self-adaptive hairy flaps on the stall delay of an airfoil in ramp-up motion .. 31

CRUZ, M., ROUCHON, J.F., DUBAYON, E., SCHELLE, J., CAZIN, S., MARCHEAL, M. AND BRAZA, M., Trailing-edge dynamics and morphing of a deformable flat plate at high Reynolds number by time-resolved PIV .. 41

CHRIST, M., BOUCHET, G. AND DUSEK, J., Effect of solid body degrees of freedom on the path instabilities of freely falling or rising flat cylinders .. 55

HARRAN, G., Influence of the mass ratio on the fluidelastic instability of a flexible cylinder in a bundle of rigid tubes .. 71

LONGATTE, E. AND BAI, F., Physical investigation of square cylinder array dynamical response under single-phase cross-flow .. 86

MOUSSAED, C., VITTORIA SALVETTI, M., WORMON, S., KOORBUS, B. AND DERVIEUX, A., Simulation of the flow past a circular cylinder in the supercritical regime by blending RANS and variational-multiscale LES models .. 114

MCNAUGHTON, J., BILLARD, F. AND REVELL, A., Turbulence modelling of low Reynolds number flow effects around a vertical axis turbine at a range of tip-speed ratios .. 124

POLITIS, G. AND POLITIS, K., Biomimetic propulsion under random heaving conditions, using active pitch control .. 139

VENKATARAMAN, D., BOITARD, A. AND GOVINDARAJAN, R., A minimal model for flow control on an aerfoil using a poro-elastic coating .. 150
of the foregoing areas are of interest, as well as review articles. Theoretical, analytical or computational, and experimental research papers in any field involving "internal flows'', e.g. in piping, turbomachinery, heat exchangers or physiological systems; or "external flows'', e.g. in aeroelasticity and other relevant fields—

processes, flow- and flow-acoustic-excited phenomena, independent of any concrete application or area of specialization; (b) application-oriented methods and techniques in the various disciplines involved.

important new findings, new ideas and breakthroughs in the field may be published on a priority basis, extra fast, as a Special Brief Communication.

For a full and complete Guide for Authors, please go to: http://www.elsevier.com/locate/jfs

Almus and Scope

The Journal of Fluids and Structures serves as a focal point and a forum for the exchange of ideas, for the many kinds of specialists and practitioners concerned with fluid–structure interactions and the dynamics of systems related thereto, in any field. One of its aims is to foster the cross-fertilization of ideas, methods and techniques in the various disciplines involved.

The Journal publishes original full-length papers and brief communications on: (a) fundamental aspects of excitation mechanisms and fluid–structure interaction processes, flow- and flow-acoustic-excited phenomena, independent of any concrete application or area of specialization; (b) application-oriented or inspired papers dealing with fluid–structure interactions, flow-induced excitation, flow-induced instability and vibration of structures in various fields—

involving "internal flows'', e.g. in piping, turbomachinery, heat exchangers or physiological systems; or "external flows'', e.g. in aerelasticity and other relevant aerodynamical applications, offshore and marine problems, wind-induced phenomena, and MEMS/biotechnology; (c) appropriate topics in unsteady fluid dynamics, i.e. with subject matter of direct interest in fluid–structure interaction, Theoretical, analytical or computational, and experimental research papers in any of the foregoing areas are of interest, as well as review articles.

important new findings, new ideas and breakthroughs in the field may be published on a priority basis, extra fast, as a Special Brief Communication.