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The flow around an isolated cylinder spinning at high rotation rates in free stream
is investigated. The existence of two steady two-dimensional states is confirmed, as
is the existence of a secondary mode of vortex shedding. The stability of the two
steady states to three-dimensional perturbations is established using linear stability
analysis. At lower rotation rates on the first steady state, two three-dimensional modes
are confirmed, and their structure and curves of marginal stability as a function
of rotation rate and Reynolds number are determined. One mode (named mode E)
appears consistent with a hyperbolic instability in the wake, while the second (named
mode F) appears to be a centrifugal instability of the flow very close to the cylinder
surface. At higher rotation rates on the second steady state, a single three-dimensional
mode due to centrifugal instability (named mode F′) is found. This mode becomes
increasingly difficult to excite as the rotation rate is increased.
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1. Introduction
The flow associated with a rapidly rotating isolated cylinder in free stream is

investigated. The flow is a function of two independent parameters: the Reynolds
number Re= UD/ν, and the normalized rotation rate α = ωD/2U. Here, U is the free
stream velocity, D is the cylinder diameter, ν is the kinematic viscosity and ω is the
rotation rate. The definition of α is such that it represents the ratio of the cylinder
surface speed to the free stream velocity. When α = 0 (no rotation), the well-studied
problem of the flow past a rigid cylinder is recovered. With zero inflow (only rotation),
the flow becomes that of a rotating cylinder in a quiescent fluid. As such, α acts as
a type of bridge between these two fundamental flows, one wake-dominated, the other
rotation-dominated. For the wake flows, the two-dimensional flows for α < 2.5, and
their subsequent loss of stability due to a range of three-dimensional instabilities, has
been well described by Rao et al. (2013).

The pertinent results from that study to the current paper are as follows. Bénard-
von Kármán-type vortex shedding was found to be suppressed for all Re for α > 1.9,
confirming and extending the findings of Mittal & Kumar (2003). On this steady
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flow, two three-dimensional instabilities were discovered using linear stability analysis,
named mode E and mode F. Mode E was shown to have an aspect of hyperbolic
instability occurring at the cusp of a single recirculation region in the wake. Mode E is
stationary, representing the transition from a steady two-dimensional flow to a steady
three-dimensional flow. Mode F was shown to be due to a centrifugal instability of
the closed region encircling the cylinder. Unlike mode E, mode F varies with time,
introducing a new frequency to the flow. This frequency appears to be associated with
a travelling or modulated wave solution along the span of the cylinder.

A number of studies exist at higher rotation rates, particularly in the range
2.5 < α < 6. Mittal & Kumar (2003) covered this range for Re = 200 in detail,
explicitly showing the existence of two steady solutions, with a hysteretic transition
between the two in the range 4.8 6 α 6 5.0. These two solutions were differentiated
by a change in length of the trailing shear layers that form the wake, and a movement
of the hyperbolic point that forms in the flow where the fluid that orbits the cylinder
rejoins the fluid that flows past. Using this movement of the hyperbolic point as a
distinguishing feature, the results of Stojković, Breuer & Durst (2002) at Re = 100
also show evidence of a change in the steady solution in the range 4.56 α 6 5.5.

The study from Pralits, Brandt & Giannetti (2010) explicitly tracked the motion of
this hyperbolic point in the flow as α was varied for Re = 100. The hyperbolic point
was shown to typically move away from the cylinder across the flow, before also
moving upstream (in fact moving beyond the central axis of the cylinder) for α > 5.
This paper then showed that near α = 5, the flow changes between the two previously
identified solutions. In fact, three stable solutions were identified as part of a careful
continuation study.

As well as the two steady solutions, a periodic solution also exists at higher
values of α. Stojković et al. (2003) identified this low-frequency single-sided vortex
shedding over the range 60 6 Re 6 200, and Mittal & Kumar (2003) showed that it
stems from a Hopf bifurcation from the steady solution at lower rotation rates. This
shedding regime, commonly known as mode II shedding, was observed in the recent
experimental investigations of Kumar, Cantu & Gonzalez (2011). The two-dimensional
DNS studies of El Akoury et al. (2008) showed that the range of rotation rates over
which the mode II shedding was observed increased with Reynolds number.

A stability analysis and full three-dimensional DNS study at Re = 200 from
Meena et al. (2011) showed that the flow was unstable to spanwise perturbations
for 3.1 6 α 6 5, spanning the two previously established steady solutions. For
α 6 4.3, the unstable modes were found to have purely real eigenvalues, and for
α > 4.3 (presumably a different base flow), the unstable modes obtained had complex
eigenvalues. Interestingly, their three-dimensional simulations at α ' 3 show the
onset of centrifugal instabilities along the span of the cylinder, which Rao et al.
(2013) demonstrated using stability analysis should have complex eigenvalues, or be
temporally varying. Therefore, there seems to be some further work required to fully
explain what occurs at these moderate values of α.

This paper confirms the existence of two steady solution states (here referred to
as steady state I and steady state II ), and the existence of a low-frequency vortex
shedding for a small range of α for Re> 50. The stability of steady state I and steady
state II to three-dimensional perturbations is then ascertained using linear stability
analysis. Two three-dimensional modes are found to grow in steady state I; these are
the modes identified as mode E and mode F in Rao et al. (2013). However, the shape
of the curve of marginal stability in the (Re, α) plane is quite complicated for both
modes, relating to very subtle changes in steady state I. A third three-dimensional
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mode is found to grow in steady state II. Like mode F, this mode appears to be due to
a centrifugal instability of the enclosed region of fluid orbiting the cylinder, and so it
is named mode F′. The curve of marginal stability for this mode is quite simple, with
Rec increasing almost linearly with α.

2. Method and validation
2.1. Numerical method and stability analysis

The numerical method employed is identical to that described in Rao et al. (2013),
and so only a brief overview is provided here. Simulations of the two-dimensional flow
were conducted using a spectral-element method (Thompson, Hourigan & Sheridan
1996; Karniadakis & Sherwin 2005; Thompson et al. 2006; Leontini, Thompson &
Hourigan 2007; Lo Jacono et al. 2010; Stewart et al. 2010). Typically, the time-
dependent Navier–Stokes equations were integrated until the flow reached a steady
state, or converged to a periodic oscillation. For cases where a steady solution was
desired, but the flow was naturally periodic (where mode II shedding was observed),
the steady spectral-element representation of the Navier–Stokes equations was solved
using a Newton–Raphson method.

The stability of these steady solutions was then investigated using global linear
stability analysis (Barkley & Henderson 1996; Schmid & Henningson 2001).
Essentially, this method assesses whether linear perturbations, with a fixed spanwise
wavelength λ, grow or decay over time. If they grow, the two-dimensional base flow is
said to be unstable to three-dimensional perturbations at the given wavelength.

The two primary outputs of this method are the growth rate (which governs stability)
and the mode shape associated with this growth rate. The growth rate is defined by
a complex multiplier, µ, which can be interpreted as the ratio of the size of the
perturbation from one time to the next. If |µ|> 1, the perturbation grows and the base
flow is unstable. Hence, when |µ| = 1, the flow is said to be marginally stable. If µ
has a non-zero imaginary component, the three-dimensional mode introduces a new
frequency to the flow. If the base flow is steady (as the base flows of this paper are),
then the three-dimensional mode is periodic in time. The complex growth rate σ is
related to the multiplier µ = eσT , where T is the period of sampling. For base flows
that are periodic, the value of T is equal to the shedding period, while for steady base
flows such as those studied in this paper, the value of T can be an arbitrary quantity.

The mode shape gives some indication of the regions of the base flow where
perturbations grow, and therefore provides insight into the physical mechanism that
leads to instability. A more detailed explanation is provided in Rao et al. (2013).

2.2. Resolution studies
Two meshes, M1 and M2, were employed to obtain the solutions for rotation rates
below and above α = 5, respectively. The distribution of the elements was more
concentrated in the vicinity of the cylinder for M2, where large gradients in the flow
are observed, particularly for high rotation rates. Both meshes used polynomial shape
functions of seventh order and the boundaries were located 100D from the cylinder to
avoid any blockage. Spatial resolution of the two domains was tested at the highest
Reynolds number, Re = 400, at four different rotation rates. Lift and drag forces were
found to vary by <1 % with further increases in resolution, giving a high degree of
confidence in the results obtained.

To validate these results, lift and drag coefficients at Re = 200 as a function of α
are compared to the results of previous studies in table 1. Some discrepancy exists,
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Padrino & Joseph (2006) Mittal & Kumar (2003) Present study

α Cd Cl Cd Cl Cd Cl

3 0.0123 −10.3400 0.0350 −10.3660 0.0397 −10.3335
4 −0.12401 −17.5820 −0.055 −17.5980 −0.0411 −17.5791
5 0.0107 −27.0287 0.1680 −27.0550 0.2169 −27.1139

TABLE 1. Variation of the time-averaged force coefficients (Cd, Cl) at the specified rotation
rate (α) at Re= 200.

but there is also discrepancy between previously published values, particularly of the
drag coefficient at α = 4. The value of the drag coefficient at this point is very small,
and is in fact negative, indicating that the rotating cylinder generates a small amount
of thrust, as well as a more significant transverse force due to Magnus lift (Prandtl
1926). It is hypothesized that this thrust is highly dependent on the location of a
hyperbolic point that forms in the flow, where fluid that orbits the cylinder and begins
to flow upstream is brought to rest by fluid flowing downstream. Very small changes
in this position can therefore result in very large (in relative terms) changes in the drag
coefficient. In absolute terms, the change is very small, and so the comparison shown
in table 1 provide further confidence that the simulations are accurate.

3. Results
The primary aim of this paper is the identification and description of the three-

dimensional instabilities growing on the two steady base flow states: steady state
I and steady state II. This allows the identification of the regions of the parameter
space, here the (Re, α) plane, where the two-dimensional flow is expected to become
unstable. These regions are determined by two factors: the regions of existence of
the two-dimensional state; and the boundary of the unstable region, or the curve of
marginal stability, for each of the three-dimensional modes. Therefore, the results of
this paper are presented so that a map of the portion of the (Re, α) plane is presented
first, in figure 1, illustrating these important factors. Following this, descriptions of
the steady two-dimensional states, and the three-dimensional modes and their defining
characteristics are presented.

3.1. Parameter space
Figure 1 presents a map of the portion of the (Re, α) plane studied. The regions of
existence of each of steady state I and steady state II are marked by the grey and
white backgrounds, respectively. Note that the ‘hard’ boundary between them should
not be taken to mean that there is no overlap in these regions.

Pralits et al. (2010) explicitly showed that these two steady states are in fact a
single continuous solution, at least at Re = 200, as α is varied. However, they showed
that there is a loop with turning points at α = 5.17 and α = 5.21, meaning that for
5.17 < α < 5.21, there are in fact three possible steady states (figure 2b of Pralits
et al. (2010) illustrates this very clearly). All three states can only be accessed by
following the loop using a continuation method, even though they all belong to the
same solution.

If a continuation method is not used, but α is simply slowly increased, there will
be a discontinuous ‘jump’ as the turning point at α = 5.21 is passed. Similarly, if α
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FIGURE 1. Regions of existence for steady state I (grey), steady state II (white), and the low-
frequency vortex shedding mode (cross-hatched). Also marked are boundaries of marginal
stability for the three-dimensional modes E (-�-), F (-©-), and F′(-•-) which grow on the
two steady modes. The arrows crossing each marginal stability curve show the direction from
stable to unstable flows. Three-dimensional modes marked with open symbols grow on steady
state I (modes E and F), whereas solid symbols mark modes growing on steady state II (mode
F′). Circular symbols mark three-dimensional modes caused by centrifugal instability (modes
F and F′).

is slowly decreased, there will be a ‘jump’ as the turning point at α = 5.17 is passed.
Hence, even though there is a single continuous solution, experiments (or simulations
conducted by simple parameter scanning) will show a hysteretic transition between
two steady states, as was found by Mittal & Kumar (2003). These two states are those
named steady state I and steady state II in this paper, and are further described in
§ 3.2.

Following from this, it may be expected that the range of α between the two turning
points is a function of Re, and that there may be a value of Re at which the two
turning points coalesce into a kind of cusp point. This would eliminate the apparent
hysteresis, but result in a discontinuous variation of the flow parameters (such as the
drag force) as this point is crossed. The results shown in figure 2(a) for α = 6.15, but
the low Re-range 20< Re< 60, appear to show this.

Also shown (by the hashed region) in figure 1 is the region of existence of a
low-frequency vortex shedding mode, previously identified by Mittal & Kumar (2003)
to be a bifurcation from steady state I. The region identified here agrees well with the
previous results of Stojković et al. (2003) and Pralits et al. (2010).

The curves of marginal stability of the three three-dimensional modes are marked
with solid lines in figure 1. The points on each curve are the points at which |µ| = 1
has been recorded. The small arrows crossing each of these curves indicates the
direction from stable to unstable flows.

Two modes are shown to grow on steady state I: these are modes E and F,
previously identified in Rao et al. (2013), which are marked with open symbols in
figure 1. Mode E has been shown to likely be due to a hyperbolic instability at lower
rotation rates (Rao et al. 2013). However, for these higher rotation rates, it is not clear
that a hyperbolic mechanism is the only mechanism of growth. It may be that there is
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FIGURE 2. (Colour online) Delineation of the two steady states. (a–c) Constant α = 6.15,
increasing Re; (d–f ) constant Re = 200, increasing α. Both sets of data cross the boundary
between steady state I and steady state II (the boundary marked by the vertical line).
(a,d) Variation of the mean drag coefficient Cd (� and � for mode steady state I and steady
state II respectively) and the streamwise location of the hyperbolic point xh (• and © for
mode steady state I and steady state II respectively), with both variables showing a distinct
change as this boundary is crossed. Panels (b) (Re = 30) and (e) (α = 4.5) show examples
of steady state I where the hyperbolic point is downstream of the cylinder centre. Panels
(c) (Re = 45) and (f ) (α = 5) show examples of steady state II, where the hyperbolic point is
upstream of the cylinder centre. All the flow images show streamlines and colour contours of
vorticity at levels ±3D/U; cross-hairs mark the cylinder centre, circles mark the hyperbolic
point location.

some cooperation between a centrifugal-type instability near the cylinder surface and a
hyperbolic-type mechanism of amplification further downstream. Further investigation
is required to completely understand the physical cause of instability for this mode.
Mode F, however, appears to be due to a centrifugal instability of the layer of fluid
at the cylinder surface (Rao et al. 2013). Both of these curves are of a reasonably
complicated shape. Some explanation for this is given in §§ 3.3 and 3.4.

A single three-dimensional mode is found to grow on steady state II. This mode,
like mode F, is due to a centrifugal instability, and so has been named mode F′. Like
mode F, its curve of marginal stability is marked with filled circles in figure 1 and is
much simpler than that for mode F, with Re increasing approximately linearly with α.
Further details are provided in § 3.5.

3.2. Steady base flows
The two steady two-dimensional base flows, steady state I and steady state II, have
been delineated in terms of two physical parameters: the streamwise location xh of the
hyperbolic point in the flow and the drag coefficient. For steady state I, the hyperbolic
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point lies downstream of the centre of the cylinder, while for steady state II, the
hyperbolic point is upstream of the centre of the cylinder. There is also a distinct
change in drag coefficient moving from one solution to the other, clearly related to
the change in location of this hyperbolic point and other associated changes in the
flow structure. For example, steady state I has tail-like structures in the wake, while in
steady state II, the shear layers wrap around the cylinder.

Plots of the streamwise location of the hyperbolic point and the drag coefficient, as
the transition from steady state I to steady state II is crossed, are shown in figure 2.
Also shown are examples of the steady flows on either side of the transition. Data
for α = 6.15 and varying Re are shown, as are data for Re = 200 and varying α.
Both show the hyperbolic point moving from downstream to upstream as the transition
occurs, as well as a distinct change in drag coefficient.

3.3. The mode E instability
Mode E was first described in Rao et al. (2013). There, it was shown that the stability
multiplier µ was purely real, indicating that the mode introduces no new frequencies.
It therefore represents a bifurcation from a steady two-dimensional flow to a steady
three-dimensional flow. It was also attributed to a hyperbolic instability mechanism,
in the high-strain region emanating from the hyperbolic point at the rear of a single
recirculation region in the wake.

Images of mode E, progressing along the curve of marginal stability presented
in figure 1, are shown in figure 3. A pertinent feature of the base flow (shown as
streamlines in the images of figure 3) is that for α < 3 (images a–e), the single
recirculation region in the flow behind the body diminishes in size with increasing
α. The hyperbolic point that forms at the rear of this recirculation region is brought
closer to the cylinder, moving upstream and ‘down’ (transversely to the flow towards
the wake centreline). For α > 3 (images f –h), this recirculation region does not form.
Increasing α sees the hyperbolic point continue to move upstream, but also move ‘up’
(transversely away from the wake centreline), away from the cylinder.

The structure of the perturbation (shown as colour contours of vorticity in the
images of figure 3) also varies. When the recirculation region is present, the mode
grows primarily in the high-strain region emanating from the hyperbolic point at its
rear, the same structure as shown in Rao et al. (2013). However, for α > 3 where the
recirculation region has disappeared, the perturbation grows again near the hyperbolic
point, but also in the enclosed layer of fluid near the cylinder surface. It is therefore
plausible that at higher α, mode E is amplified by both hyperbolic and centrifugal
instability mechanisms.

Inspection of figure 1 shows that as α is increased, Rec (the value of Re at marginal
stability for mode E) first increases, then decreases. The turning point is around
α ' 2.5, close to where the recirculation region disappears. For α > 2.5, Rec rapidly
decreases. This is accompanied by an apparent exponential increase in the spanwise
wavelength λ, as shown in figure 4. It should also be noted that at high α > 5.7, the
upper value of Re at which mode E is unstable is not at the boundary of existence of
steady state I. Rather, the mode restabilizes before this boundary is reached.

3.4. The mode F instability
Mode F appears to be caused by a centrifugal instability of the layer of fluid close
to the cylinder surface (Rao et al. 2013). At the higher values of α studied in this
paper, the relationship between Rec and α is reasonably complicated, with two turning
points as shown in figure 1. The first of these occurs around α = 2.5, again close to
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FIGURE 3. (Colour online) Spanwise perturbation vorticity contours of the mode E
instability for (a) α = 2.1, Re = 240, λ/D = 1.8; (b) α = 2.4, Re = 320, λ/D = 1.4;
(c) α = 2.6, Re= 340, λ/D= 1.4; (d) α = 2.75, Re= 300, λ/D= 1.25; (e) α = 3, Re= 220,
λ/D = 1.2; (f ) α = 4, Re = 100, λ/D = 1.6; (g) α = 5, Re = 50, λ/D = 4 and (h) α = 6,
Re = 30, λ/D = 9. Contour levels vary between images as follows: (a–e) ±0.100D/U;
(f ) ±0.250D/U; (g) ±0.010D/U; (h) ±0.005D/U. Streamlines are overlaid over the contour
plots. Flow is from left to right, with the cylinder spinning anticlockwise.
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FIGURE 4. Variation of the critical spanwise wavelength with rotation rate for the mode E
instability. The wavelength begins to increase exponentially around α = 2.5, close to where
the recirculation region in the wake disappears.

the value where the recirculation region in the wake disappears. The second occurs
close to α = 3.8. Therefore, the stability behaviour of mode F can be broken into three
ranges of α: α < 2.5, where Rec decreases with increasing α; 2.5 6 α < 3.8, where
Rec increases with α; and 3.8 6 α < 4.8, where Rec again decreases with increasing
α before steady state I ceases. This behaviour can be explained by considering the
centrifugal mechanism of instability.
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Initially ignoring viscous effects, for a flow to be centrifugally unstable, curved
streamlines are required, with higher angular momentum fluid on the inside of
the curve than outside (Rayleigh 1917; Drazin 2004). This occurs in the enclosed
region of fluid at the cylinder surface. The wavelength of the instability scales as
the thickness of the layer of fluid, which is centrifugally unstable (Taylor 1923;
Drazin 2004). Therefore, thinner boundary layers imply shorter wavelengths. Viscosity
now plays a role, in that it more effectively dampens short wavelengths than long
wavelengths, so that the flow should be stable until higher Re. Therefore, thinner
boundary layers imply shorter wavelengths which imply higher Rec.

Figure 5(ai) shows the approximate thickness of the centrifugally unstable region
(defined as the region with tangential velocity decreasing outwards at the rear of
the cylinder) as a function of α along the curve of marginal stability for mode F.
Figure 5(aii) shows the variation of the most unstable wavelength. The figure shows
that the wavelength appears to be proportional to the boundary layer thickness, which
has turning points at similar values of α as Rec shown in figure 1.

Figure 5(aiii) is the predicted frequency of mode F along the curve of marginal
stability. As stated in § 2.1, if the imaginary component of µ is non-zero, a
new frequency is introduced by the three-dimensional mode. This frequency (non-
dimensionalized by the U and D to become a Strouhal number) can be calculated from
the complex multiplier as St3D = tan−1(µimag/µreal)/(2πT). Figure 5 shows that this
frequency is approximately inversely proportional to the boundary layer thickness.

Rao et al. (2013) showed that the frequency of mode F is governed by the time
taken for a ‘packet’ of perturbation to orbit the cylinder twice. The orbital speed has
been shown to be dictated by the orbital speed of one particular streamline around the
cylinder. The position (or radius) of this streamline is the radius of the cylinder plus
some proportion of the boundary layer thickness. If this proportion remains constant,
as the boundary layer thickness is reduced, this ‘governing’ streamline will move
closer to the cylinder surface, and therefore might be expected to have a higher speed,
resulting in a higher frequency. The results here imply that this mechanism is at work
for mode F.

3.5. The mode F′ instability
Mode F′ is similar in structure and behaviour to mode F, except that it grows on
steady state II. As for mode F, this mode is caused by a centrifugal instability of
the layer of fluid adjacent to the cylinder surface. It appears to be the only three-
dimensional instability of steady state II. This is most likely due to the fact that the
wake region is much less significant with the onset of steady state II, so only the
instability mechanisms that act on the surface layer are viable.

In a manner similar to mode F, mode F′ introduces a new frequency that is
governed by the time it takes for a perturbation packet to orbit the cylinder twice.
Figure 6 shows a sequence of eight images of the perturbation vorticity field of mode
F′ taken over one period. Images (a–d) (covering the first half-period) are mirrored
by images (e–h) (covering the second half-period), except for a change in sign. The
orbiting nature of the perturbation can be deduced by noting the position of the
predominantly green (light) blob in (a–d), and the position of the predominantly blue
(dark) blob in (e–h).

Unlike mode F, the progression of mode F′ with increasing α is reasonably
simple. With increasing α, Rec increases essentially linearly. Figure 5(bi) shows
that the boundary layer thickness decreases approximately linearly. As for mode F,
figures 5(bii) and 5(biii) show that the critical wavelength is proportional to the
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FIGURE 5. (i) Boundary layer thickness δ/D, (ii) critical wavelength λc/D, (iii) Strouhal
number of the three-dimensional mode, St3D, for (a) mode F and (b) mode F′, all measured
along the relevant marginal stability curve (note that Re is also a function of α as shown
in figure 1). Dots (•) are measurements, dashed lines (− − −) are approximated trend
lines. Both modes are centrifugally unstable, and the figures show that in both cases λc/D is
approximately proportional to δ/D, and St3D is approximately inversely proportional to δ/D.
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FIGURE 6. (Colour online) Spanwise perturbation vorticity contours of the mode
F′ instability over one period of shedding at α = 6, Re = 320 and λ/D = 0.3, with
streamlines in the vicinity of the cylinder overlaid: (a) T = 0,T; (b) T = T/8; (c) T = 2T/8;
(d) T = 3T/8; (e) T = 4T/8; (f ) T = 5T/8; (g) T = 6T/8; (h) T = 7T/8.

boundary layer thickness, and the frequency is approximately inversely proportional to
the boundary layer thickness. This implies that the same argument presented in § 3.4
for the scaling of the wavelength and frequency for mode F also applies for mode F′.
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FIGURE 7. Contours of positive growth rates (σ > 0) as a function of α and λ/D for
(a) mode E at Re = 80, (b) mode F at Re = 260 and (c) mode F′ at Re = 260. In all the
plots, the solid lines (—) and shaded contours represent levels of σ , and the dashed line (- - -)
shows the value of λ/D at which the maximum growth rate occurs for each α. The plots show
that a wide range of wavelengths can be unstable, and this range is not simply centred around
the value of λ/D at maximum growth.

The constant decrease in the boundary layer thickness with increasing α and
the constant increase in Rec imply that as α →∞, the boundary layer thickness
approaches zero, and Rec→∞.

3.6. Variation of the wavelength of all modes with rotation rate

While the stability analysis typically predicts a fastest-growing wavelength, for
parameters beyond marginal stability, there is a range of wavelengths that become
unstable for a given mode. If Re is held constant, this range is defined by the area
enclosed by the contour of marginal stability (where the growth rate σ = 0) in the α, λ
plane. Figure 7(a) shows this contour for mode E at Re = 80. Figures 7(b) and 7(c)
show this contour for modes F and F′ at Re = 260. The plots of figure 7 also show
contours at other positive values of σ , where the base flow is unstable to the given
mode, and a dashed line showing the value of λ/D at which the growth is maximum
for a given α.

The figure shows that for all modes, the range of unstable wavelengths initially
increases quickly once the critical value of α (the value at which the flow first
becomes unstable) is crossed. For mode E, this occurs at α ' 4.1 as α is increased.
For mode F, this occurs both at α ' 2.4 as α is increased, and α ' 3.1 as α is
decreased (the complicated shape of the marginal stability curve for mode F shown in
figure 1 shows that the growth rate should first increase, then decrease with increasing
α). For mode F′, this occurs at α ' 5.6 as α is decreased. Also, this range is not
always centred around the value of λ/D at which the growth is at a maximum. This is
particularly clear for mode E, where the value of λ/D at maximum growth is towards
the lower end of the range of unstable wavelengths, particularly for higher values of
α, as shown in figure 7(a). This is despite λ/D at maximum growth increasing with
increasing α.

These results indicate that, once the flow is unstable, there is a multitude of
wavelengths that can be excited. The wavelength of the eventual saturated flow may
not match the wavelength predicted to have the highest linear growth. Some caution
therefore needs to be taken when using the stability analysis results of this paper to
identify modes in experimental or direct numerical simulation settings, particularly far
beyond the marginal stability point.
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4. Conclusions
The stability of the flow past a rotating cylinder at higher rotation rates in a free

stream has been investigated using linear stability analysis. The existence of two
steady states has been confirmed. The first of these states, named steady state I, has
been confirmed to be unstable to two three-dimensional modes. The first, mode E
is essentially an instability of the wake, yet shows some possible dependence on a
centrifugal instability mechanism with increasing rotation rates. The second, mode F,
is purely due to centrifugal instability, and the variation of Rec for this mode has been
explained by considering this. The second steady state, steady state II, occurs at higher
rotation rates and has been shown to be unstable to a single three-dimensional mode,
mode F′. This mode is also due to a centrifugal instability.
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