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The transient growth of a counter-rotating equal strength vortex pair, which descends
under mutual induction towards a ground plane, is examined through non-modal
linear stability analysis and direct numerical simulation. The vortex pair is studied
at a height of five vortex spacing distances above the wall, consistent with the first
mode of vortex instability/wall interaction observed by experiment. Three regimes are
identified in which the optimal mode topology and non-modal growth mechanisms are
distinct, correlated with the widely studied Crow and elliptic instabilities, alongside
a wall-modified long-wavelength-displacement-type instability. The initial optimal
amplification mechanisms are found to be weakly influenced by the wall, with the long-
and short-wave mechanisms consisting of anti-symmetric amplification at the leading
hyperbolic point and symmetric amplification at the trailing hyperbolic point, respectively,
as observed by out-of-wall studies previously. The linear growth of the Crow instability
is found to be impeded by the wall, and the evolution results in the suppression of
both the secondary structure formation and vortex rebound. The linear elliptic mode
remains largely uninhibited however, and substantially outgrows the long-wave modes,
illustrating the importance of the elliptic instability on the wall-bounded interaction.
Both the wall-modified long-wave and elliptic optimal growth modes show substantial
amplification in the secondary vortices. At finite perturbation amplitudes, the nonlinear
formation of both long- and short-wavelength secondary vortex tongues are shown to play
a critical role in the vortex dynamics as the pair strongly interacts with the wall.

Key words: vortex dynamics, vortex instability, vortex interactions

1. Introduction

The roll-up of trailing vortices associated with aircraft wing tips is of significance to
safety considerations when regulating the landing frequency of aircraft (Spalart 1998),
where strong persisting vortices can roll lighter aircraft faster than can be resisted by
the use of ailerons (Vernon 1999). This practical interest has motivated much of the
relevant literature concerning vortex pairs (see Leweke, Le Dizes & Williamson (2016) for
areview), with further scientific interest due to the elementary configuration of the vortices
in the flow problem. Specifically, the roll-up results in a pair of counter-rotating parallel
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vortices in its wake, which exhibits complex two- and three-dimensional behaviours. The
study of the interactions and instabilities of these vortex pairs can be used to understand
the often more complicated vortical flows observed in nature, such as in the case of sunspot
formation (Matthews, Hughes & Proctor 1995) and in the engineering industry, such as in
the instance of active control of flows in axial compressors (Bae, Breuer & Tan 2005).

Furthermore, the addition of a ground plane below the vortex pair, as in the case of
wing-tip vortices generated on take-off and landing, modifies the vortex pair trajectory
and interaction (Lamb 1932), and involves complex viscous dynamics at the boundary
(Doligalski 1994) which can be comparable to that of oblique ring-wall impingement
(Asselin & Williamson 2017). The resultant physics is of interest across all scales of
fluid dynamics, from micro-scale coherent turbulent structures at walls (Hussain 1986)
to vortex generators (Anderson & Gibb 2008), through to large aircraft wakes interacting
with runways (see Gerz, Holzédpfel & Darracq (2002) for a review).

The two-dimensional dynamics of inviscid counter-rotating point-vortex pairs in the
presence of walls was first studied by Lamb (1932), who noted that outside of wall
effect, equal strength counter-rotating pairs descend by mutual induction at a constant
speed of Uy = I'/27tb as a function of their circulation I and vortex spacing b. Upon
interaction with the wall, the vortices move apart along a hyperbolic trajectory. In the
case of finite-core viscous vortex pairs, however, the vortices were observed to deviate
from the hyperbolic trajectory by ‘rebounding’ from the wall, first explained by Harvey &
Perry (1971). As the descending vortex pair interacts with the wall, a boundary layer with
opposite-signed vorticity forms. Once the adverse pressure gradient in the boundary layer
is strong enough, the secondary vorticity rolls up into discrete vortex structures, and the
primary vortices ‘rebound’ and rise (Kramer, Clercx & van Heijst 2007). The secondary
vortices then spiral around the primary vortices and further sets of ‘rebounds’ have been
observed (Orlandi 1990).

Unlike two-dimensional vortex pairs however, the dynamics of three-dimensional
vortex pairs is substantially altered by the introduction of cooperative three-dimensional
instabilities. The counter-rotating vortex pairs undergo two widely studied instabilities
distinguished by their respective wavelengths.

The long-wavelength instability is characterised by symmetric sinusoidal displacement
of the vortex tubes with peak growth rates depending on the relative core size a/b for
wavelengths between 6 and 10 times the vortex spacing b. This displacement can be
observed in high-altitude aircraft wakes, where the wing-tip vortices are visualised by
condensation (Scorer & Davenport 1970). The instability was first studied outside of
wall effect by Crow (1970), who described the instability through the displacements of
vortex filaments by Biot—Savart induction. The analysis of Crow (1970) illustrated that the
instability consists of three mechanisms: first, the self-induced rotation of the deformations
of the vortices which were observed by Kelvin (1880); second, the strain field induced by
the vortex pair that consists of maximum stretching in the 45° direction, where the angle
is measured from an imaginary line that joins the two vortices; and third, a resonance
mechanism between the perturbations of both vortices that induces stretching and rotation
opposite to that of the self-induced rotation. For a specific set of relative core size a/b,
angle of the plane on which the instability lies 6 and displacement wavelength 1/b, the
rotation effects cancel and the amplitude of the instability grows. The amplitude of the
wavy instability continues to grow on the plane until the troughs of the sinusoids of both
vortices connect periodically. This reconnection subsequently results in the formation
of elliptic vortex rings, observed experimentally by Leweke & Williamson (2011). The
long-wavelength instability has been studied extensively in the context of aircraft wakes
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with, for example, the inclusion of turbulence and stratification (Misaka et al. 2012).
Crow’s analysis has been extended by Bliss (1970) and Widnall, Bliss & Zalay (1971)
to consider finite-core vorticity distributions based on a Batchelor vortex and has been
applied to a large number of flow configurations including vortex arrays (Robinson &
Saffman 1982) and collisions of vortex rings (Lim & Nickels 1992). Crouch (1997) and
Fabre & Jacquin (2000) investigated the stability of two trailing vortex pairs as would
be located behind an aircraft wing in the flaps-down configuration, finding the Crow
instability to be significantly accelerated with the potential to be initiated by perturbing
the inner pair.

The short-wavelength instability is characterised by the growth of perturbations that
modify the structure of the vortex core itself, with wavelength of similar order to the
vortex core size. The vortex filament approach employed by Crow (1970) is insufficient
due to this scaling, and the existence of the short-wavelength instability was first illustrated
by Moore & Saffman (1975), who established the excitement of short-wavelength Kelvin
modes through an externally imposed strain field on a general axisymmetric vortex
distribution. Tsai & Widnall (1976) further confirmed this in the context of a Rankine
vortex and found that the growth of these modes stems from the strain field induced by
each vortex resulting in elliptic rather than circular streamlines. Subsequent investigations
found that this ‘elliptic’ instability applies to Lamb—Oseen vortex profiles (Fabre, Sipp &
Jacquin 2006) and Batchelor vortices with axial flow (Lacaze, Ryan & Le Dizes 2007).
Kerswell (2002) summarises the analytical framework describing the elliptic instability.
The short-wave perturbations were further shown to influence the dynamics of vortex pairs
generated by aircraft wings through the breaking of the symmetry of the long-wavelength
mode, and through an increase of the growth rate of the Crow instability by approximately
20 % (Leweke & Williamson 1998). Direct numerical simulations of the elliptic instability
in counter-rotating pairs was performed by Laporte & Corjon (2000) that recovered the
features of the work of Leweke & Williamson (1998). Le Dizes & Laporte (2002) extended
the theoretical results to Gaussian vortex pairs and obtained expressions for the growth rate
of the short-wave instability as a function of global flow parameters.

Upon wall interaction, the secondary vortices also become unstable (see Luton & Ragab
1997; Harris & Williamson 2012) and Asselin & Williamson (2017) demonstrated that
the three-dimensional instabilities strongly influence the evolution of the viscous vortex
pair/wall interaction problem.

Specifically, the long-wavelength instability was found to modify the three-dimensional
wall-bounded dynamics depending on the extent of the instability upon wall interaction.
At relatively small initial heights, the growth of the instability was found to be inhibited by
the presence of the ground. As the Crow instability develops, regions of the vortex tubes
closest to the wall interact with the boundary layer first, with a corresponding increase in
local pressure driving flow axially away from these regions. Asselin & Williamson (2017)
identified three modes of interaction as a function of the initial height the vortices were
generated above the wall, all of which resulted in the formation of structures comparable
to those observed in vortex-ring impingement, studied experimentally by Lim (1989) and
numerically by Cheng, Lou & Luo (2010). These modes of interaction were triggered by
small perturbations in the vortices, with the amplitude of these perturbations upon wall
interaction determining the subsequent physics. The resultant dynamics, in particular the
formation of vortex ‘tongues’ and ‘rings’, are almost completely unrecognisable when
compared to the unbounded Crow instability, implying that the optimal perturbation
mechanism of the wall-bounded interaction for various perturbation amplitudes is of
significant interest.
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The consideration of Batchelor vortices as asymptotic solutions to the linearised
Navier—Stokes equations for trailing-line vortices downstream of an aircraft (Batchelor
1964) is an important extension to the stability analysis of vortex pairs as better
approximations to experimental aircraft wakes. The addition of axial flow in the case of
the Batchelor vortex allows for positive instability growth with respect to both inviscid
(Ash & Khorrami 1995) and viscous (Fabre & Jacquin 2004) perturbations on an isolated
vortex without the induced strain field of the second vortex. The addition of the second
vortex further complicates the stability picture, with a modified elliptic instability that
changes depending on the degree of axial flow (Lacaze et al. 2007). Lacaze et al. (2007)
demonstrated that axial flow damps the most resonant Kelvin modes and introduces new
combinations of resonant Kelvin modes that become more unstable with increasing axial
flow. For strong axial flow, the growth rate of the swirling jet instability (Delbende & Rossi
2005) dominates and the nonlinear evolution of the Batchelor vortex pair changes, where
the instability is dominated by inviscid negative helical modes.

In the context of aircraft landing safety, accelerating the growth of the wake instabilities
can alleviate hazards posed by the trailing vortices. The ‘optimal perturbation’, or the
perturbation that generates the largest perturbation energy growth over a period of time,
gives insight into the conditions necessary to best accelerate the instability (Barkley,
Blackburn & Sherwin 2008). Optimal growth analysis has been applied to a variety of
flow configurations (see, for example, Blackburn, Barkley & Sherwin 2008; Abdessemed
et al. 2009). This direct adjoint technique has been further applied by Pradeep & Hussain
(2006) to consider an arbitrary initial perturbation in the case of singular Lamb—Oseen
vortices, who found that the optimal perturbations take the form of vortical spirals at the
outer region of the vortex, which excite bending waves within the core, with the physical
mechanism explained by Antkowiak & Brancher (2007) for a single vortex. In the case of
vortex pairs, initial studies exciting the vortex pair at wavelengths characteristic of the
cooperative instabilities found that the instability process could be greatly accelerated
(Crow & Bate 1976). Brion, Sipp & Jacquin (2007) extended on these studies through
an optimal perturbation investigation and found that the characteristic time of the Crow
instability could be reduced by a factor of roughly two through optimal linear perturbation
of the base flow. Brion et al. (2007) realised the importance of the two stagnation
(or hyperbolic) points in the amplification of the Crow instability, where the leading
stagnation point was found to form vortex rings that optimally induce the long-wave
bending mode. Donnadieu et al. (2009) continued the study of transient growth over
a range of wavenumbers and investigated the behaviour at smaller times and for the
anti-symmetric case, where the trailing stagnation point was found to be important.
Johnson, Brion & Jacquin (2016) analysed the nonlinear response of a counter-rotating
vortex pair to the optimal linear perturbation determined by Brion et al. (2007), finding
a periodically evolving vortex-ring state. An accelerated instability was observed at large
initial perturbation amplitudes resulting in rapid decay of coherency. Further studies have
considered optimal growth of co-rotating vortex pairs (Mao, Sherwin & Blackburn 2012)
and four-vortex configurations (Fabre, Jacquin & Loof 2002). A variety of passive and
active physical controls have been proposed for the breakdown of tip vortices (Greenblatt
2012) and four-vortex systems (Crouch 2005), taking optimal amplification into account.

Recently, linear optimal perturbations have been applied to the case of vortex/wall
interaction. Stuart, Mao & Gan (2016) investigated the transient growth associated with
wall generated secondary vorticity through the study of a single Batchelor vortex near
the ground. Wakim et al. (2017) examined a pair of counter-rotating Lamb-—Oseen
vortices interacting with a ground plane through optimal perturbation studies involving
two-dimensional perturbations for a small number of time horizons. Wakim et al. (2017)
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proposed two control strategies for optimal forcing of the vortex pair; one with significant
gains in perturbation kinetic energies and the other employing an active blowing/suction
method at the ground to maximise the lateral position of the vortices.

A complete picture of the optimal perturbation and control of vortex pairs interacting
with the ground is yet to be attained. As the influence of three-dimensional instabilities
on the dynamics of the vortex pair/wall interaction has been shown to drastically alter
the resultant dynamics (Asselin & Williamson 2017), understanding the influence of
three-dimensional perturbations is critical to the flow problem.

This research seeks to fill the gaps in our understanding by considering the optimal
perturbation and transient growth of a counter-rotating vortex pair interacting with a
wall to three-dimensional perturbations. The article is organised as follows: first the
problem definition and numerical approach is described in § 2; then the base flow study is
discussed in § 3; the results of the linear transient energy growth follows in § 4, with direct
numerical simulation employed to study the nonlinear evolution of the vortex pair with
finite magnitude optimal perturbations in § 5. The article ends with conclusions in § 6.

2. Problem formulation

This study considers the optimal growth of an equal strength counter-rotating pair of
Lamb—-Oseen vortices located above a ground plane, motivated by a trailing vortex pair
formed from wing-tip vortices interacting with a runway.

The flow problem is governed by the incompressible Navier—Stokes equations

V.eu=0, 2.1
ou
ot

where u is the velocity field scaled by the initial descent velocity Uy = I/(27mhy), T
is the time non-dimensionalised by the time taken for the vortex pair to descend a unit
separation distance t = t1/(27th}) and p is the kinematic pressure scaled by UZ. The
Reynolds number is defined by the circulation and the length scale is based on the vortex
spacing b:

2w _,
+@W-V)u= —Vp—i—R—V u, (2.2)
e

r
Re = —. (2.3)
v

The vortices are modelled by the superposition of two Lamb—Oseen vortices separated
by distance b, alongside two image vortices to ensure no flow through the ground plane.
Each vortex is fully defined by

r r?
2.= L e (__2>, Q4)
Ta; ag
where §2, is the axial vorticity field, I" is the circulation, r is the radial distance from
the vortex core and ay is the initial characteristic core radius. The characteristic core
radius increases in time due to diffusion and for a single vortex may be determined by
a = \/a} + 4vt, where v is the fluid’s kinematic viscosity.

The initial Reynolds number is set to Re = 3125, large enough to demonstrate the
formation of vortex tongues observed by Asselin & Williamson (2017) (see § 5). In line
with the study of Leweke & Williamson (2011), the initial core size is set to ag/by = 0.23.

Although each individual vortex satisfies the governing equations, the superposition of
the two initial velocity fields does not. To account for this, the vortices are generated six
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separation distances (h/by, = 6.0) above the wall, and the transient analysis is initiated
from the point at which the vortices are located five separation distances above the wall,
which gives ample time for the vortices to satisfy the Navier—Stokes equations (see Sipp,
Jacquin & Cosssu 2000). In particular, this relaxation period allows the individual vortex
cores to relax to a semi-periodic state and for initial oscillations to die out (also see Le
Dizes & Verga 2002; Roy et al. 2008). The initial vortex height is taken to be consistent
with the first mode of interaction observed by Asselin & Williamson (2017) and as a
reasonable estimate to critical aircraft wake vortex formation. It is noted that the height at
which the vortices are generated is non-critical, as it is the amplitude of the instability upon
wall interaction which dictates the dynamics (Asselin & Williamson 2017). Thus, given
that the instability has ample time to develop, increasing the amplitude of the instability
is effectively analogous to increasing the height at which the vortices form. The time
taken for the vortices to descend this distance is found to be r = 6.50, slightly longer
than the ¢ = 2m predicted by theory due to cross-diffusion engendered circulation loss.
At h/by = 5.0, the core radii of the vortices are found to be @ = 0.255 by computing the
vorticity polar moment,

o JeolOr = B/27 + (3 = (/b)) 2. dV o)
- [ o2.dv ’ :

and the instantaneous velocity of U = 0.143 is found by locating the vortices att = 6.50 +
0.01 to compute the streamlines in the moving reference frame alongside the instantaneous
circulation I = 2ntbU = 0.916, where the vortex spacing b has increased slightly to b =
1.02. The instantaneous Reynolds number at 4/by = 5.0 can therefore be approximated
as Re = 3125(I"/I;) =~ 2860. However, integrating the vorticity over the right half of the
domain gives a value of I" = 0.945 at the release position.

The boundary conditions are taken to be representative of the physical problem. The
lower-wall boundary condition is of a no-slip type, and the lateral and upper boundaries
are located far enough from the vortex pair such that as the vortex system is integrated
forward in time, the velocity field at the boundary remains close to that of the initial vortex
dipole.

2.1. Base flow

The flow is numerically solved on a semi-plane (x, y > y,,,) normal to the axial direction
(z). The base flow is taken to be two dimensional and evolves with time to interact
with the ground plane (figure 1). The direct numerical simulation (DNS) technique
employs a spectral-element method to spatially discretize the domain, with high-order
Lagrangian tensor-product polynomial basis functions used allowing for spatial refinement
to be selected based on the order of the tensor-product interpolating polynomials. The
equations are integrated in time using a fractional-step method accounting separately
for the advection, pressure and diffusion terms of the Navier—Stokes equations (see
Thompson, Hourigan & Sheridan 1996; Thompson et al. 2006). This technique, described
in more detail by Karniadakis & Triantafyllou (1992), allows for the advantages of spectral
convergence whilst maintaining the flexibility of h-type convergence (Karniadakis &
Sherwin 2005). For the three-dimensional simulations, the variation of variables in the
spanwise direction is through a Fourier decomposition; again see Thompson et al. (1996)
and the references therein.

For finite perturbation amplitude studies (see §5), the initial optimal perturbation
field from the linear transient growth study is superimposed onto the base flow prior
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FIGURE 1. The two-dimensional unperturbed base flow of a viscous equal strength
counter-rotating vortex pair spaced apart by distance b and with core radius a/by = 0.23
interacting with a wall. The vortex pair is initially located at (x,y) = (£0.5b¢, 6.0by) and
descends by mutual induction to the ground plane located at y = 0. The transient growth study
is initiated (7 = 0) at the point at which the vortex pair has descended to i/by = 5.0, and
the resultant wall interaction is illustrated at times of (a) T = 20, (b) T = 30, (¢) T = 40,
(d) T=250,() T=060, () T=70,(g) T=280and (h) T = 90. Positive vorticity is shown
in red, negative in blue.

to forward time integration. Various amplitudes are considered, defined by the ratio
of initial perturbation to base flow energy A = ,/E,/E, in the domain, where the
kinetic energy of the perturbation and base fields integrated over the domain are given
by the inner products E,(u) = (u,u)/2 = (fQ u- udV) /2 and E,(u') = (W', u') /2 =
( S o - u dV) /2, respectively. These quantities can be accurately calculated using the
same quadrature techniques required for the application of the spectral-element method.

Furthermore, for finite perturbation amplitude studies, the trajectory of the primary
vortex is obtained by locating the maximum vorticity of the primary vortex. The
circulation is likewise calculated by taking the line integral of the velocity field along
contours representing 5 % of the maximum vorticity of the primary vortices. In both cases,
the Q-criterion is used to identify the primary vortex, such that secondary vorticity is
excluded from the analysis.
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2.2. Linear perturbations

The general solution to the flow field can be decomposed into the sum of a base flow and
perturbation component such that u = U + ', p = P + p'. Substituting these expressions
into the Navier—Stokes equations (2.1) and (2.2) and omitting nonlinear products of the
perturbation components results in the linearised Navier—Stokes equations. The result
of this procedure differs only from the original governing equations by the nonlinear
advection term which becomes — (¢’ - V) U— ((_] . V) u’, and can therefore be efficiently
integrated forward in time with similar techniques to the nonlinear equations.

Furthermore, the forthcoming transient growth analysis necessitates integration of the
adjoint linearised equations backwards in time:

V.u =0, (2.6)

du* * * T * 27[
—U-Vu' +u' - (VU) = -Vp*+ =

Vu*. 2.7
9t Re U 2.7)

Here the superscript * denotes the adjoint perturbation field of the corresponding variable.

The assumption of spatial periodicity in the axial direction allows for a further
simplification of the disturbance fields, which can be decomposed through a Fourier series
expansion in the axial direction z such that

o0
[, p.u", p*] = / [, p,u", p*] e dk, (2.8)
which allows for the decoupling of Fourier modes with different axial wavenumbers k =
21 /A, where A is the wavelength of the mode respectively. Both the perturbation vorticity
and spatial eigenmodes are derived from the two-dimensional Fourier modes .

2.3. Transient growth formulation

Optimal transient growth is based on the maximum growth of perturbation energy in the
flow up to a finite-time horizon 7. The forward time integration of a given perturbation
field over a specific time interval 0 < ¢ < T can be reformulated as the eigenvalue problem
u'(T) = Au'(0), where the 4 operator represents the state transition between the initial
and time horizon perturbation fields. Likewise, the adjoint operator A* evolves the adjoint
perturbation field governed by (2.6) and (2.7) backwards in time from the time horizon
t=Ttot=0.

In addition to calculated optimal growth modes, modal solutions were also obtained
to compare their associated amplification rates to optimal transient growth. These modal
solutions were obtained for the base flow at /by = 5.0 after adding a vertical velocity
equal to the descent velocity of the vortex pair and freezing the base flow to stop diffusion.
A linear stability analysis was run for various kb to find the two peaks, and the maximally
amplified long- (Crow) and short-wavelength (elliptic) modal perturbation fields were
subsequently evolved alongside the original base flow to determine the energy growth
for these two cases. Note that the maximally amplified long- and short-wavelength modal
solutions were found to have growth rates and preferred wavelengths of kb = 0.91 and 9.0
and ot = 0.77 and 1.03, respectively. These values are slightly different from but close to
the corresponding theoretical values given in figure 2, presumably with the difference due
to the strong interaction of the initially closely spaced vortex pair.

The technique employed in this study to compute the optimal transient growth is
described by Barkley et al. (2008), and involves sequential forward and backwards time
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FIGURE 2. Theoretical modal growth rates of unbounded equal strength, counter-rotating
vortex pairs for the parameters considered in this article. The long-wavelength Crow mode
(- - -) has a peak growth rate of o = 0.81 for kb = 0.81. The elliptic curves illustrate the
inviscid predictions (—), and the viscous predictions of Le Dizes & Laporte (2002) (-.-.) and
Leweke et al. (2016) (---) for the parameters detailed in §2, i.e. v =1/3125, I' = £0.916,
a =0.255 and b = 1.02. The peak growth rates of the first branch of the elliptic instability
are ot = 1.42,1.03,0.73 at kb = 8.91, 8.58, 8.31 for the inviscid and two viscous predictions,
respectively. The inserted images show the calculated axial vorticity distributions of the long-
and short-wavelength modes.

integration of the linearised and linearised adjoint Navier—Stokes fields to the horizon time
and back until convergence of the optimal initial conditions. The optimal perturbation
problem is one which maximises the energy growth for a specific time horizon T such
that G(T) = max(E,(T)/E,(0)), where the initial perturbation field is normalised to unity.
It can be shown that G(T) can be obtained through the construction of the eigenvalue
problem

AD)A (D = iy, el = 1, (2.9)

where the largest eigenvalue of the set A, and corresponding normalised eigenvector of the
set &, translate to energy gain (G,,,,) and the initial perturbation field that results in the
optimal energy gain, respectively.

As indicated above, instead of the explicit construction of A(T)A*(T), the operator
is iteratively constructed through successive forward and backward time integration of
the linearised equations until convergence of the largest eigenvalue A ... The leading
eigenmodes are extracted using an implicitly restarted Arnoldi method (Sorensen 1997),
and the base flow data is interpolated from saved solutions of the nonlinear governing
equations (see Barkley et al. (2008), Mao, Sherwin & Blackburn (2011) and Mao et al.
(2012) for more details). For the present simulations, the base flow fields are saved
every one time unit to use for interpolation of the time-evolving base flow for the
optimal transient growth analysis. From these fields, the evolving base flow is interpolated
using quadratic interpolation based on three fields closest to the current integration
time. The accuracy of this process, dependent on the time interval between saved fields,
was internally validated by evolving the optimal growth perturbation fields through the
selected time horizon by independently integrating the perturbation field as well as the
base flow at the same time. This was tested for different modes and different time
horizons. As an example, for 7 = 30 and kb = 0.75, the amplitude growth difference is
approximately 0.02 % between these two methods. Predictions from the current code have
been previously verified against the standard shear-flow cases of Butler & Farrell (1992),
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and previously applied to optimal perturbation growth for stenosed pipe flows (Griffith
et al. 2010).

Of interest to the flow problem is the optimal energy gain G,,, as a function of
wavenumber k. In particular, the wavenumbers corresponding to those of the elliptic and
Crow instabilities are expected to exhibit the fastest initial growth, and the corresponding
initial optimal perturbation fields for maximum growth (given by the eigenvectors) will be
presented.

2.4. Grid independence

A highly resolved macro-element grid is employed to ensure fine resolution of the base
flow and eigenmodes of the optimal growth study. A large domain is considered, consisting
of a rectangular region with boundaries located at —20by < x < 20by, 0 < y < 22b,, 0 <
z < A. The x and upper y domain bounds are set to be large enough such that the velocity
remains close to that determined by the initial vortex dipole. Increasing the domain area
by a factor of 4 results is an increase in the area-integrated initial kinetic energy of only
0.02 %. The grid has substantially increased resolution near the wall and in the descent
region of the vortex pair. As convergence of the optimal perturbation field is likely to
exhibit considerably different behaviour as compared to the base flow, convergence studies
are necessary for both the base flow and transient growth study.

Table 1 illustrates the independence of the results to the internal macro-element
resolution. For each transient growth study, the perturbation field is successively integrated
forward and backwards in time in accordance with the method described in § 2.3 until the
energy gain G,,, no longer changes to seven significant figures. The resultant optimal
initial perturbation for a given polynomial order p is then added to the base flow with
identical p for the nonlinear base flow computations. These are then integrated forward
in time with df = 0.0025 (i.e. 400 steps per convective time). The largest recorded
percentage difference for the transient growth study is 3.5 % as p is varied, and 1.6 % in
the energy gain for the nonlinear base flow analysis. The results in all cases are therefore
presented for a polynomial order of p = 5, and for 144 Fourier planes in the case of the
three-dimensional DNS computations, where a Fourier expansion is used to represent the
variation of the flow variables in the out-of plane periodic direction (see Thompson et al.
(1996) for details).

3. Base flow

The two-dimensional wall-bounded interaction for the horizon times considered in the
optimal growth analysis is illustrated in figure 1.

The dynamics can be broadly characterised into four phases with distinct dynamics.
The first phase, which occurs between 0 < ¢ < 10, consists of the two vortices outside
of wall effect, where the dynamics is not significantly different from a free-slip case. A
boundary layer then forms due to the adverse pressure gradient at the wall induced by
the dipole and begins to roll-up for times 20 < ¢ < 40 (figure la—c), defining the second
phase. The third phase consists of times between 50 < ¢ < 60 (figure 1d,e), where the
secondary vorticity fully forms secondary vortices which advect about the primary vortex
pair. Finally, for times 70 < 7 < 90 (figure 1f—h), the secondary vortices interact with the
ground, and weak tertiary vortices are ejected from the boundary layer, indicative of the
fourth and final phase. The vorticity dynamics of the dipole interacting with the wall has
been widely studied and more detailed descriptions can be found by the studies of Orlandi
(1990) and Kramer et al. (2007).
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kb =0.75 kb =1.57 kb ="1.0
T 10 30 60 90 10 30 60 90 10 30 60 90
INSp=3 221869  3.46269 5.04147 5.76852  2.10359 3.00702 5.86716  7.60915  2.11839 4.35961 7.46944  10.31124
LNSp=4 222193  3.46398 5.03012 5.73932  2.10637 3.00250 5.85075 7.56340 2.12084 4.37650  7.55124  10.39633
INSp=5 222212 346371 5.03274 5774585  2.10653  3.00202 5.85364 7.57242 212229 4.37732 753643 10.38680
<
DNSp =3 245753 3.80893 5.02830 5.35417 2.63813 3.43483 5.31544 5.15503 240111 4.49896 4.82881 4.36758 §
DNSp =4 2.45747 3.81004 5.01859 5.35697 2.63710 3.43383 5.30804 5.14683 2.41100 4.52461 4.83865 4.35530 g
DNSp =5 245745 3.80944 5.01931 535849 2.63651 3.43216 530619 5.14950 2.41207 4.52637 4.84216 4.35970 %
DNS N, =120 245745 3.80944 5.01931 535848 2.63651 3.43216 5.30619 5.14950 2.41207 4.52637 4.84216 4.35970 %
S

TaBLE 1. Grid sensitivity data for the transient growth (LNS) and three-dimensional base flow (DNS) computations for the three wavenumbers of
particular interest identified in § 4. The parameter p indicates the polynomial order of the macro-element shape function, equal to one less than the
number of nodes in each direction, and T denotes the horizon time. The base 10 logarithm of the energy gain is presented in all cases, and the base
flow convergence is presented for an initial perturbation to base flow energy ratio of \/E,/E; = 0.002. Finally, the base flow data for p = 5 is also
shown for N, = 120 Fourier planes as compared to N, = 144 Fourier planes for all other studies.
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FIGURE 3. The energy gain as a function of the horizon time for the peak wavenumber
modes identified in figure 4, namely the optimally perturbed Crow mode (kb = 0.75), the
wall-modified Crow mode (kb = 1.57) and the elliptic mode (kb = 7.0). The peak modal growth
rates illustrated in figure 2 are compared to the wall-bounded study, where (- - -) shows the
Crow mode, (-.-.) the viscous predictions of the elliptic mode based on plane waves (Le Dizes
& Laporte 2002) and (- - - ), the viscous predictions of the elliptic mode based on numerically
determined solutions (Leweke et al. 2016). The phase numbers indicate the approximate regions
governed by the different physics identified in § 3.

4. Linear transient energy growth

With parallel association to the base flow, the transient energy growth can be categorised
into the same four phases as a function of the horizon time. The varying transient growth
dynamics for the different phases is discussed with reference to the literature below.

4.1. Phase I: outside of wall effect

In the case of the energy growth associated with the vortex pair predominantly outside of
wall effect (0 < T < 10), the resultant growth can be compared directly to studies of fully
unbounded vortex pairs as in Donnadieu et al. (2009) and Brion et al. (2007), alongside
the theoretical results of Le Dizes & Laporte (2002) and Leweke et al. (2016).

Figure 2 illustrates the theoretical modal growth rate curves for the two cooperative
instabilities. In the case of the elliptic instability, a correction is necessary to account
for the effects of viscosity. The corrections provided by Le Dizes & Laporte (2002) are
based on plane-wave solutions given by Landman & Saffman (1987), with Leweke ef al.
(2016) providing an updated estimate based on numerically determined damping rates. The
curves are calculated through the substitution of the parameters of the current problem
(see figure 2) into the theoretical expressions of Crow (1970), Landman & Saffman (1987)
and Leweke et al. (2016). The substitution is first verified against the published values to
ensure that the theoretical growth rate curves are accurate. The unbounded theory predicts
the fastest growing Crow mode to occur for a wavenumber of kb = 0.81 with growth
rate ot = 0.81, the inviscid elliptic maximum growth for kb = 8.91 for o7 = 1.42 and
the viscous elliptic growth rates ot = 0.73 for kb = 8.31 and o7 = 1.03 for kb = 8.58
corresponding to the corrections of Le Dizes & Laporte (2002) and Leweke et al. (2016),
respectively. The modal theory is compared to the transient results in figure 3 and is
discussed with reference to the various stages in the following sections. It is noted that
the base flow undergoes considerable modification over the period of time considered,
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FIGURE 4. Perturbation energy gain G as a function of the axial wavenumber k over a number
of time horizons 0 < 7' < 90. The curves are grouped based on the base flow dynamics (see
figure 1 and associated discussion) and are illustrative of the transient growth of the vortex pair
(a) outside of wall effect, (b) involving strong boundary layer interaction, (c) upon separation of
the secondary vortices from the wall and (d) the large time dynamics. Wavenumbers associated
with local peak growth rates at the various stages are identified. As the peak gain always increases
with time, the curves associated with any given time horizon can be identified.

with figure 3 therefore comparing the modal growth of an unbounded vortex pair with the
wall-modified transience.

In the case of the presently considered vortex system, both of these widely studied
cooperative instabilities, namely the Crow and elliptic instabilities, are illustrated clearly
in figure 4(a), where the wavenumbers associated with the local maxima of the energy
gain are approximately comparable to experimental and numerical studies of the two
instabilities.
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The exact optimal wavenumbers, however, differ when compared to the modal analysis,
suggesting the pair is still undergoing transient growth. Donnadieu et al. (2009), who
studied the transient dynamics of a counter-rotating vortex pair at Re = 2000, found that
the transient dynamics lasts until the two vortices have descended twice the separation
distance b. Similarly, at Re = 3600, Brion et al. (2007) estimated the transient period
to last until 7 = 1.50. Between 0 < T < 10, the vortices in the present study descend a
distance of 1.47by, such that the transient dynamics are clearly still relevant prior to wall
interaction. Furthermore, the dipole weakly interacts with the wall, with the boundary
layer vorticity $2p; /82,00 =~ 0.04, where 2, is the maximum vorticity in the boundary
layer, for the duration of the first stage. Figure 4(a) clearly shows that the energy gain
and optimal wavenumbers are modified by transience, i.e. they have not yet settled on the
modal solution. In particular, the elliptic mode grows fastest at a wavenumber of kb = 6
and all simulated wavenumbers kb grow positively as compared to the theoretical modal
predictions, which select a small range of wavenumbers that lead to positive growth. The
Crow mode likewise grows fastest at a lower wavenumber as compared to the theoretical
predictions. Antkowiak & Brancher (2007) made the observation that during the transient
stage, the wavenumber corresponding to the maximum growth drifts towards the modal
solution for a single vortex. It was found that with increasing t, the shift was towards
larger wavelengths in the case of the vortex pair.

The energy gain also delineates from the modal solutions through the relative growth
rates of the two cooperative instabilities. The modal prediction of Leweke et al. (2016)
in figure 2 shows that the elliptic mode outgrows the long-wavelength mode for the
parameters considered in this study. However, the energy gain of the elliptic mode is seen
to be approximately 30 % lower than the Crow mode over the first phase (0 < 7 < 10)
(figure 4a), further confirming that this regime is dominated by the transient non-modal
amplification described by Brion et al. (2007).

The structure of the optimal perturbations for the long-wavelength mode (figure 5a—f)
for G(T = 10) is comparable to the results of Antkowiak & Brancher (2007), who found
that the structure of the long-wavelength perturbation consists of a set of spirals at the outer
periphery of a single vortex corresponding to an m = 1 disturbance. Comparable spirals
can be seen in the symmetric amplification in figures 5(a) and 5(d), where a mechanism
resembling the Orr mechanism unfolds the spirals resulting in a displacement-type
response (see Donnadieu et al. (2009) for detailed discussions on the short-time dynamics
of unbounded pairs). Conversely, the elliptic mode is dominated by an anti-symmetric
disturbance, which is strongest on the upper boundary of the Kelvin oval and is pictured
in figures 5(g)-5(7). This also shows weak spirals of w, around the vortex cores.

4.2. Phase 2: boundary layer formation and growth

Wakim et al. (2017) found that once the vortex pair is influenced by the wall, the
anti-symmetric mode significantly dominates the symmetric mode for T > 1.5. As such,
only the dominant (anti-symmetric) perturbations are considered in this study. The times
where the growth rate of the symmetric and anti-symmetric modes are similar (primarily
outside of wall effect) has been detailed by Donnadieu et al. (2009).

The wall modifies the transient growth of both the Crow and elliptic modes prior to
the ejection of secondary vortex structures due to the now rapidly evolving base flow.
The optimal wavenumber drift towards that of the theoretical modal solutions is observed.
The peak energy gain for the long-wavelength mode is realised for kb = 1 (figure 4b),
with the Crow instability band now significantly more selective to optimal wavelengths
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FIGURE 5. Initial small time (7 = 10) optimal perturbation fields for the three peak modes
identified in figure 3. (a—c) Illustrates the perturbation vorticity field w;, wy, wy for kb = 0.75,
(d—f) the perturbation vorticity field for kb = 1.57 and (g—i) the perturbation vorticity field for
kb = 7.0. The same contour levels are used for any given wavenumber, with the stronger vorticity
components scaled to allow for comparisons. The dotted lines are contours of the base flow
vorticity 0.182,, and the solid lines are streamlines in the frame of reference moving with the
vortex pair, clarifying the Kelvin oval and hyperbolic (stagnation) points.

closer to the theoretical prediction. Likewise, the elliptic instability band becomes more
selective, with the largest growth observed for kb = 7.0.

As the wall-bounded boundary layer grows in strength, the energy of the elliptic mode
perturbations begin to outgrow the gain of the Crow mode. The perturbations of the
long-wavelength mode are suppressed by the wall interaction, as is clear from figure 3.
The elliptic mode, in turn, substantially outgrows the Crow mode over this phase, with an
energy gain of G ~ 5 x 10* as compared to G ~ 10* of the long-wave mode for T = 40
(figure 4D).
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FIGURE 6. Initial large time (7" = 60) optimal perturbation fields for the three peak modes
identified in figure 3. (a—c) Illustrates the perturbation vorticity field w;, @y, y for kb = 0.75,
(d—f) the perturbation vorticity field for kb = 1.57 and (g—i) the perturbation vorticity field for
kb = 7.0. The same contour levels are used for any given wavenumber, with the stronger vorticity
components scaled to allow for comparisons. The dotted lines are contours of the base flow
vorticity 0.1£2,, and the solid lines are streamlines in the frame of reference moving with the
vortex pair, clarifying the Kelvin oval and hyperbolic (stagnation) points. Note that the structure
of the initial perturbations fields (and, hence, the optimal mechanism) does not vary significantly
for T > 20.

The structures of both the elliptic and long-wave optimal perturbation fields now
becomes comparable to those observed at large times by Brion et al. (2007) and Donnadieu
et al. (2009). These fields are shown in figure 6, and the structure is qualitatively
similar over all horizon times in the range 10 < T < 100. This suggests that the initial
physical mechanism responsible for optimal growth is not strongly influenced by the
wall. Furthermore, there is no perturbation in the ground region at times where the
vortices are far from the ground. Only at larger times, where the vortices begin interacting
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FIGURE 7. Optimal response for the kb = 0.75 long-wavelength mode. (a—c) Illustrates the
perturbation vorticity field w,, wy, w, for T = 30, (d-f) the perturbation vorticity field for
T = 50 and (g—i) the perturbation vorticity field for 7 = 90. The same contour levels are used for
any given horizon time, with the stronger vorticity components scaled to allow for comparisons.
The dotted lines are contours of the base flow vorticity 0.12,, showing both the primary and
secondary vortices.

with the wall, do the perturbation fields become non-negligible at the wall. The optimal
long-wavelength mechanism is dominated by the symmetric mode, with amplification of
w, at the leading hyperbolic point followed by an induction of the Crow-type bending
instability. A notable difference between the two long-wave modes is the intensity of
amplification of w, at the leading hyperbolic point, which is stronger for kb = 1.57
due to wall interaction. In contrast, the optimal mechanism driving the elliptic mode is
anti-symmetric, and amplification of w, at the trailing hyperbolic point is followed by an
induction of the elliptic instability within the vortex cores. The amplification of w, is strong
around the trailing region of the Kelvin oval, and amplification of w, plays a significantly
more critical role as compared to the bending modes.

The optimal response is consistent with the studies of the unbounded instabilities,
with the long-wavelength modes resulting in displacement-like amplification (figures 7a—c
and 8a—c) and the elliptic response showing short-wavelength core deformations in the
vortex pair (figure 9a—c). Interestingly, the responses further illustrate a fundamental
difference between the two long-wavelength modes. The kb = 0.75 mode develops at an
angle typical of the unbounded Crow instability of ~45°, whilst the wall-modified Crow
mode grows at an angle near 0° as it approaches the wall, which impacts the subsequent
formation and development of the secondary vortex structures (see § 5).

4.3. Phase 3: ejection of the secondary vortices from the boundary layer

Once the secondary vorticity rolls up into discrete vortices (figure 1d,e), the optimal
growth of the long-wavelength Crow mode splits into two local maxima (figure 4¢). The
first, at kb = 0.75 is representative of the physical mechanism responsible for accelerating
the Crow instability outside of wall effect. The second, at kb = 1.57 recognises the
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FIGURE 8. Optimal response for the kb = 1.57 long-wavelength mode. (a—c) Illustrates the
perturbation vorticity field w,, wy, w, for T = 30, (d-f) the perturbation vorticity field for
T = 50 and (g—i) the perturbation vorticity field for 7 = 90. The same contour levels are used for
any given horizon time, with the stronger vorticity components scaled to allow for comparisons.
The dotted lines are contours of the base flow vorticity 0.152;, showing both the primary and
secondary vortices.

O Om: T © 1 =
=4
= O1f 1F s e} 1F ity
0 1 g L 1 0 L " 1 1 0 I g s 4 L
-3 2 -1 0 1 2 3 -3 2 -1 0 1 2 3 -3 2 -1 0 1 2 3

(@

—®

FIGURE 9. Optimal response for the kb = 7.0 short-wavelength mode. (a—c) Illustrates the
perturbation vorticity field w;, wy, w, for T = 30, (d-f) the perturbation vorticity field for
T = 50 and (g—i) the perturbation vorticity field for 7 = 90. The same contour levels are used for
any given horizon time, with the stronger vorticity components scaled to allow for comparisons.
The dotted lines are contours of the base flow vorticity 0.152,, showing both the primary and
secondary vortices.
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importance of the secondary vorticity in the optimal growth, and is hence associated with
accelerating the growth of the secondary vortices post wall interaction, which is optimal
for a wavelength of less than half of that of the unbounded Crow mode. The energy gain
for the kb = 1.57 mode between time horizons 7' = 50 and 7 = 60 is over an order of
magnitude, significantly greater than the original Crow mode, which is inhibited by the
wall. The change in the optimal mechanism due to wall interaction is clearly illustrated in
figure 3 that shows the kb = 0.75 mode to be fastest growing over the interval 0 < 7' < 50,
after which the kb = 1.57 mode dominates. Contrariwise, the elliptic mode remains largely
unaffected by the separation of the secondary vortices. In continuation from the previous
stage, the rate of change of the elliptic energy growth remains large, and grows at close to
the same rate across a broad range of wavenumbers.

A further departure from the unbounded modal theory is observed, namely that the
small selection of unstable wavenumbers is not observed in the wall-bounded system.
Specifically, for 2 < kb < 6, where the modal theory does not predict positive growth
rates, the perturbation energy gain between 7 = 50 and T = 60 is of two orders of
magnitude, whereas the two identified long-wavelength instabilities grow a single order
of magnitude at most (figure 4c¢).

The structure of the optimal response for the three local maxima is shown
in figures 7(d—-f), 8(d—f) and 9(d—f). The response is strongest on the periphery
of the secondary vortices, with weaker amplification within the primary vortices,
alongside resonance between primary and secondary vortices. Upon ejection of the
secondary vortices from the boundary layer, the modified long-wave mode undergoes
a relatively greater amplification of w, (figure 8d) on the periphery of the secondary
vortices, suggesting that this mode is associated with energy growth of the secondary
vortex structures. This is consistent with the findings of Williamson et al. (2014),
who experimentally observed the secondary vortices undergo a shorter wavelength
displacement-type instability resulting in ‘waviness’. The elliptic mode (figure 9d—f)
promotes a qualitatively similar amplification of @, within the secondary vortices;
however, the amplification of w, within the secondary vortices plays a substantially larger
role as compared to the long-wave instabilities.

4.4. Phase 4: large time dynamics

At large times where the secondary vortices have advected about the primary vortex
pair and interact with the wall (see figure 1f-h), figure 4(d) shows that the energy gain
maps become relatively homogeneous as a function of time horizon. The kb = 1.57
mode continues to dominate the kb = 0.75 mode, and the elliptic instability grows at a
rate comparable to the unbounded modal prediction (figure 3). Once again, it is clear
that the narrow selection of wavenumbers predicted by modal theory differs from the
wall-bounded system at large times, where large gains are observed for all studied
wavenumbers.

The optimal response remains dominated by amplification within the secondary
vorticity. In particular, the two long-wavelength modes show that the amplification is
dominated by secondary vortex/wall interaction by perturbations in w, (figures 7g—i and
8g—i), with a weak Crow-like interaction in the primary vortex pair. Contrariwise, the
amplification in the short-wavelength mode weakens in the secondary vortices upon
wall interaction, and instead primarily amplifies the rolled-up boundary layer vorticity
(figure 9g—i). In all cases, particularly in the long-wavelength modes, the primary vortex
pair is still impacted by the perturbations, with the magnitude however being dwarfed by
that of the wall interaction.
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FIGURE 10. A comparison between the linear energy growth results and the energy gain
associated with finite amplitude optimal perturbations of the three linearly fastest growing
wavenumbers. The solid circles (e) show the optimal linear solution connected with a straight
line. The solid grey line shows the linear modal growth for comparison. The nonlinear energy
growth for an initial finite perturbation superimposed onto the base flow is shown for each
optimal wavenumber for an initial energy ratio of A = 0.0002 with dashed lines (- - -), A = 0.002
with dash—dot lines (-.-.), and A = 0.02 with dotted lines (- - - ) in black and grey for the optimal
and modal perturbations, respectively.

5. Direct numerical simulation with optimal perturbations

It is clear that the secondary vortex structures play a crucial role in the dynamics of
the instability in wall effect. Finite perturbation studies are hence employed to analyse
the differences in optimal amplification on the dynamics of the fully three-dimensional
nonlinear system. The three local maxima of the optimal growth curves are considered
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for nonlinear direct numerical simulations, namely the optimally perturbed base flow at
kb = 0.75,1.57 and 7.0. Figure 10 is a complex summary figure that compares the energy
growth of the (i) linear optimal growth study to that of the (ii) linear modal growth study,
and also with the three-dimensional direct numerical simulations based on seeding the
base field with (iii) optimal growth and (iv) modal solutions. For the latter two cases, the
finite perturbation amplitude is set through the initial perturbation to base flow energy ratio
A = /E,/E,, and increases in the perturbation amplitude can be considered as physically
analogous to increasing the initial height above the ground at which the vortices form.
Finite amplitudes of A = 0.0002 and A = 0.002 are presented for all wavenumbers of
interest, with the additional case of A = 0.02 presented for kb = 0.75 to capture nonlinear
saturation for this long-wavelength mode. Figure 11 compares the growth predictions
of the three modes for A = 0.002, emphasizing the similarities in the magnitude of the
nonlinear growth rates over the time horizon studied.

5.1. Long-wavelength modes

At small finite perturbation amplitudes (A = 0.0002) the energy gain of the long-wave
modes closely follows the linear predictions (see figure 10a,b), and the associated
nonlinear evolution of the two long-wavelength modes is shown in figure 12. As
evidenced by the differences in amplification between the modes from the linear study,
the long-wavelength mode kb = 0.75 is associated with the acceleration of the instability
outside of wall effect, and is qualitatively similar to the unbounded Crow instability. The
second long-wavelength mode (kb = 1.57) is a wall-modified displacement mode that
maximises energy amplification between the secondary vortices that are ejected from
the wall. The direct numerical simulation both further illustrates and confirms these
hypotheses from the linear results.

In the case of the Crow-like mode, the optimal perturbation in wall effect is associated
with the suppression of both the generation of secondary vortices (figure 12¢) and the
‘rebound’ effect (figure 12e), as observed in the study of a single vortex with axial flow
(Stuart et al. 2016). The suppression of the rebound is evident when comparing the vortex
trajectories in figure 13, where the ‘rebound’ is fully suppressed for the kb = 0.75 mode
and is subdued for the kb = 1.57 mode. As compared to the unbounded vortex pair modal
solution, alongside the other wavelengths considered, the energy growth of this widely
studied long-wavelength mode is substantially suppressed by the wall (figure 3), and the
rebound of both the primary and secondary vortex structures, as well as the secondary
vortex tongues observed by Asselin & Williamson (2017), is inhibited. The suppression
occurs at large times (from phase 3 onward), which corresponds to strong wall interaction
dynamically corresponding to the ejection of vortices from the boundary layer. This is
consistent with the linear predictions, where at large times, the amplification remains
localised to the wall for the long-wavelength modes.

Based on the interaction of a single vortex, Stuart et al. (2016) concluded that as a
result of this suppression, the widely studied ‘rebound’ observed in two-dimensional
(2-D) simulations would be substantially weakened in three-dimensional studies as a
result of transient effects excited by atmospheric turbulence and noise. On the contrary,
however, the wall-modified secondary vortex displacement mode reaffirms the importance
of the primary vortex ‘rebound’ and secondary structures observed by Asselin &
Williamson (2017) in the three-dimensional nonlinear system. In particular, even at small
initial perturbation amplitudes, this dominant long-wave mode (figure 11) illustrates the
formation of the three-dimensional vertical vortex tongues due to the ‘waviness’ in
the secondary vortex (figure 12b,d), and the subsequent interaction of these tongues at
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FIGURE 11. The energy gain as a function of horizon time for the three linearly fastest growing
wavenumbers, here studied with DNS for the initial optimal perturbation superimposed onto the
base flow. The results are shown for an initial finite perturbation amplitude of A = 0.002. See
figure 3 for a comparison to the linear study.

the plane of symmetry resulting in the production of more intricate vortical structures on
smaller scales with time (figure 12f).

The response of the two modes differs substantially when larger finite perturbation
amplitudes are considered. For an amplitude of A = 0.0002, the Crow-like kb = 1.57
mode closely follows the linear solution, and the gain only deviates slightly from the
A = 0.002 results up to energy gains of G = 10*. At this larger amplitude, however, the
energy growth of the wall-modified Crow mode saturates, and deviations from the linear
solution observed for T Z 50, with the energy growth remaining below G =35 x 10*
(see figure 10a,b). For the case of the kb = 0.75 mode, this saturation is observed for
a perturbation amplitude an order of magnitude larger (figure 10a). In both cases, the
saturation is associated with the growth of three-dimensional secondary structures and the
breakdown of the primary vortex pair. This long-wavelength mode vortex breakdown can
be readily verified by the consideration of the temporal evolution of circulation shown
in figure 14, which also illustrates the axially variable loss in circulation. For finite
perturbation amplitudes which do not deviate strongly from linearity, there is only a slight
difference in circulation between modal and optimal perturbations over the evolution time.
The growth of the secondary structures can be readily observed in figure 15. Both the
A = 0.02 response of the Crow mode and the A = 0.002 response of the wall-modified
Crow mode are reminiscent of the horizontal and vertical ring modes observed
experimentally by Asselin & Williamson (2017) and numerically by Dehtyriov, Hourigan
& Thompson (2019) in the vortex pair/wall interaction.

When compared to the modal solution, starting the direct simulations seeded by the
optimal transient growth results in significantly faster initial growth and earlier saturation.
Perturbing the DNS with the elliptic mode also results in saturation, but at a later point
in time (figure 10). In the case of the long-wavelength mode, the overall energy growth
is much smaller, such that seeding the flow with the low amplitude optimal growth
perturbation does not quite saturate for 7 < 90. Seeding with the modal Crow mode,
however, results in considerably longer saturation times.

In the initial stages of the evolution, the kb = 0.75 mode responds to the optimal
perturbation through a displacement-type instability at an angle of near 45°, as predicted
by the linear theory. At the large finite amplitude, the troughs of the instability are close to
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FIGURE 12. A comparison of the nonlinear response of the vortex pair system to the two
long-wavelength optimal perturbations for an initial finite amplitude of A = 0.0002. The kb =
0.75 mode is shown in the left column and the kb = 1.57 mode in the right column. The vortex
structures are visualised with the isosurfaces of the g-criterion for ¢ = 0.001 and are contoured
from blue (the minimum at the given time) to red (the maximum at the given time) with pressure.
Two wavelengths are shown for clarity. (a,b) T = 50, (¢,d) T = 60, (e,f) T = 80.

reconnecting upon wall interaction (figure 15a). The secondary vortices proceed to ‘wrap’
around the primary vortices and the strong pressure gradient in the primary vortex pair
results in vortex collapse (figure 15¢). These vortices then ‘rebound’ from the wall and
breakdown into smaller complex three-dimensional fine-scale structures (figure 15¢).
Likewise, the initial stages of the kb = 1.57 evolution follows the linear and small
finite amplitude solutions, where the instability grows at an angle of near 0° to the wall.
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FIGURE 13. A comparison of the trajectories of the nonlinear evolution of the primary vortices
for the various optimal perturbations. The solid line (-) shows the trajectory of the primary vortex
for the 2-D base flow case, the dash—dot (-.-.) line shows the trajectory of the long-wavelength
mode kb = 0.75 for A = 0.0002, illustrating the suppression of the vortex rebound. The dotted
line (- - - ) shows the trajectory for the kb = 1.57 mode and A = 0.0002, and the dashed line (- - -)
shows the kb = 7, A = 0.0002 trajectory.

In the case of relatively large finite amplitude however, due to larger pressure gradients
upon wall interaction, the secondary vortex tongues are significantly more pronounced
(figure 15b.d), and an accelerated breakdown of the primary vortex pair follows. These
secondary structures then interact at the plane of symmetry and expand radially outwards
to form large vortical ‘loops’ (figure 15f), with the vortices breaking down into smaller
fine-scale structures.

The deviation from the linear solution is therefore clearly dominated by strong pressure
gradients upon wall interaction due to the increased ‘waviness’ of the primary vortices.
This suggests that the amplification predicted by the linear theory outside of wall effect
is critical to the understanding of the influence of the ground plane. When compared to
figure 12, the differences are clear, with the strong nonlinearity resulting in augmented
secondary vortex formation, rapid breakdown of the primary vortices (figure 14) and the
accelerated generation of small complex fine-scale structures.

5.2. Elliptic mode

In contrast to the long-wavelength modes, where the nonlinear deviation is provoked by
the long-wave-displacement-nature of the instabilities, the elliptic mode deviates from the
linear results at small initial perturbation amplitudes (figure 10c). For A = 0.0002, the
direct numerical simulation closely follows the optimal solution to 7 ~ 50 and G ~ 10°
and for A = 0.002 to T ~ 30 and G ~ 10*. For finite initial amplitudes A > 0.0002,
therefore, the elliptic mode does not outgrow the long-wave modes, with the resultant
energy gains at 7 =90 of similar orders of magnitude (figure 11). For even small
amplitudes, therefore, the resultant relative difference in vortex strength evolution is
significantly larger than that of the long-wavelength mode (figure 14c). The rapid loss in
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FIGURE 14. The temporal evolution of circulation I" of the primary vortices illustrating the
breakdown of the primary vortex pairs. The solid lines (-) show the evolution for the 2-D base
flow case, and the grey and black lines distinguish the modal and optimal solutions, respectively.
(a) The kb = 0.75 mode, where the squares are for A = 0.002 and the diamonds for A = 0.02.
For this mode, the nonlinearity results in substantially different circulation evolution at z = A
(---)and z = 4/2 (-.-.) (b) The kb = 1.57 mode, where the squares are for A = 0.0002 and
diamonds for A = 0.002. (¢) The kb = 7.0 mode for A = 0.002. The evolution in circulation is
shown until the primary vortices breakdown into complex fine-scale structures.

vortex strength associated with deviation from the 2-D base flow circulation coincides with
the saturation of the growth rate curves in figure 10. Optimal perturbations trigger the rapid
vorticity decay earlier than elliptic modal perturbations of similar spanwise wavelength,
resulting in dissipation of the vortex pair in a shorter overall time (figure 14c). However,
a modal perturbation also results in rapid dissipation, with approximately the same decay
half-life once the flow becomes highly nonlinear, except that the decay is delayed by a
short time relative to the total evolution time.
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FIGURE 15. A comparison of the nonlinear response of the vortex pair system to the two
long-wavelength optimal perturbations for initial finite amplitudes which illustrate significant
deviation from the linear predictions of the gain. The kb = 0.75 mode is shown in (a,c,e) for
A = 0.02, and the kb = 1.57 mode in (b,d,f) for A = 0.002. The vortex structures are visualised
with the isosurfaces of the g-criterion for ¢ = 0.001 and are contoured from blue (the minimum
at the given time) to red (the maximum at the given time) with pressure. Two wavelengths are
shown for clarity. (a,b) T = 50, (c,d) T = 60, (e,f) T = 80.

Similar to the long-wavelength mode, seeding the flow with a modal perturbation
results in considerably longer saturation times, with the saturation occurring at 7 ~ 60
instead of 7 & 30 for the optimal growth perturbation. Furthermore, the initial energy
growth is substantially larger for the optimal mode as in the case of the long-wavelength
instability.
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FIGURE 16. A comparison of the nonlinear response of the vortex pair system to the elliptic
kb = 7.0 optimal perturbations for A = 0.002. The vortex structures are visualised with the
isosurfaces of the g-criterion for ¢ = 0.001 and are contoured from blue (the minimum at the
given time) to red (the maximum at the given time) with pressure. Four wavelengths are shown
for clarity. The times shown are for (a) T =30, (b) T =40, (c) T =50, (d) T = 55, (e) T = 60,
(f) T = 65.

The underlying reason for the sensitivity of the elliptic mode to finite perturbations
is a consequence of the large (linear) energy gain in the initial stages of the vortex
pair/wall interaction. This results in strong short-wavelength deformation in the primary
vortex cores prior to wall interaction (figure 16), translating to localised increases in
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viscous interaction with the wall, periodically raising the local pressure, and therefore
driving axial flow in the primary vortex pair (figure 16a). This deformation results in
reversed ‘waviness’ in the secondary vortex sheet (figure 16b), which rolls up and forms
secondary vortex tongues analogous to ones observed in both ring/wall interaction (Lim
1989) and long-wavelength instability/wall interaction studies (Asselin & Williamson
2017) (figure 16¢,d). The relatively large linear amplification of the elliptic mode outside
of wall effect is therefore responsible for the nonlinear saturation of the energy gain upon
wall interaction.

These tops of the secondary vortex tongues subsequently rotate to a vertical
configuration (figure 16¢), prior to advection towards and interaction with the symmetry
plane (figure 16f). The resultant interaction results in the breakdown (through loss of
uniformity) of the primary vortex pair, and is dominated by complex fine-scale vortical
structures. The formation and interaction of these tongues holds remarkable scalar
similarity to the tongues observed for the long-wavelength mode (Dehtyriov et al. 2019),
and suggest that under transient growth engendered by atmospheric noise, both long-
and short-wavelength vortex tongues will form and play an integral part in the bending,
stretching and trajectory of the primary pair.

It is clear that in all cases, the optimal perturbation amplifies the modes in accordance
to linear theory prior to wall interaction. The extent of this amplification governs the
nonlinear interaction at the wall. Strong amplification in the secondary vortices acts to
accelerate the growth of the instability in the small amplitude limit, but is frustrated at
finite amplitudes by the nonlinear interactions arising from strong pressure gradients due
to vortex tube displacement in the case of the long-wavelength modes, and vortex core
modification in the case of the elliptic mode. With all three modes undergoing similar
energy gains for perturbation amplitudes A > 0.0002, it is clear that all three of the closely
studied modes play an important role in the dynamics and evolution of the vortex pair
interacting with a wall.

The choice of the Reynolds number and core size reflects both experimental studies
(Leweke & Williamson 1998; Asselin & Williamson 2017) and the computational
limitations of numerical studies. It has been qualitatively shown that variations in the
initial core size do not play a significant role in the macroscopic features of the wall
dynamics (Dehtyriov et al. 2019), and that the instabilities can be visualised in real
high-Reynolds-number aircraft flows. For real aircraft, an estimate can be made for the
energy required to produce the initial optimal perturbations discussed. For example, on
landing, the Boeing 737-800 approach speed is approximately 160 knots (82 ms~!), and
weighs 70 000 kg with a wing aspect ratio of 9.5, wing area S = 124.6 m? and wing span
b = 35.8 m. Assuming a typical Oswald efficient factor of ¢ = 0.85 and a sea level density
of p =1.225 kgm™, the lift coefficient can be estimated to be C; = 1.33, giving an
induced drag on landing of C;, = C7/(nARe) ~ 0.07. As the lift induced drag is entirely
responsible for the energy in the aircraft wake (which ultimately rolls up into the two
trailing vortices), the power in the vortices can hence be estimated to be P =D; -V =
0.5pV3S C,. =~ 3 MW. The power, therefore, of an active device which induces the optimal
perturbations considered in this study, would require, as an estimate, A> - P = 1200 W
per wavelength for a perturbation of A = 0.02. As a further first-order estimate, the
suppression of the aircraft wake over a typical runway length of L = 2500 m hence
requires a total power of Py = A? - P - L - (kb)/(21th) W, or 93 kW for the elliptic mode
and 10 kW for the long-wavelength mode. This mechanism could therefore be practically
applicable to the active control of aircraft wakes. Validating the results at higher Reynolds
numbers, alongside the interaction of ambient turbulence with the optimal evolution, could
further extend this work to provide additional understanding of the physics underlying this
flow configuration.
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6. Conclusions

The influence of a ground plane on the transient growth of an equal strength
counter-rotating vortex pair has been studied by solving for the optimal energy gain of
the perturbed linear Navier—Stokes equations and through direct numerical simulation
of the superposition of the locally optimal modes with the base flow. Both the long
(Crow) and short (elliptic) wavelength instabilities were retrieved, with an additional
displacement-type mode associated with the instability of the secondary vortices due to
the wall interaction observed.

The transient growth in the presence of the wall is found to modify the optimal
wavenumbers at which the instabilities grow. Analogous to the observations of Antkowiak
& Brancher (2004), who observed transient drift of the wavenumber to the modal optimum
in a single vortex, the optimal wavenumbers are modified first by small time associated
transience outside of wall effect, and then by the rapidly evolving wall interaction.
Furthermore, in-line with studies of unbounded pairs (Donnadieu et al. 2009) and single
vortices interacting with walls (Stuart et al. 2016), the perturbations associated with all
of the simulated wavenumbers (0 < k < 10) grow positively prior to convergence to the
modal predictions.

The optimal mechanism resulting in the unbounded Crow mode, here realised for
kb ~ 0.75, is found to be significantly suppressed by the wall, with the relative increase
in growth rate decreasing as the vortex pair approaches the wall. Upon ejection of the
secondary vortices from the boundary layer, this mode is dominated in growth by the
secondary vortex associated instabilities, here realised for a wavenumber of kb = 1.57, for
the entirety of the evolution. At large times, the amplification in the secondary vortices
is highly localised to the near-wall region. The initial optimal mechanism for both of
these long-wavelength modes is similar to the mechanism observed for unbounded pairs,
with the amplification dominated by anti-symmetric disturbance in @, concentrated on
the leading hyperbolic point of the dipole. The optimal response of the kb = 0.75 mode
consists first of the typical ~ 45° displacement-type mode of the Crow instability, with
amplification of the resultant secondary vortices through a similar displacement-type
instability. The response of the kb = 1.57 mode is qualitatively similar, with the exception
of the instability growing at an angle of closer to 0° prior to significant wall interaction.

The resultant direct numerical simulation of the long-wavelength mode illustrates the
differences in influence of the optimal growth mechanisms on the flow field. At small
finite perturbation amplitudes (A = ,/E,/E, = 0.0002), the long-wavelength kb = 0.75
mode closely follows the linear predictions and is severely inhibited by the wall, the
secondary vortices are suppressed and the primary vortex rebound is not nearly as strong
as observed in two-dimensional simulations. The modified Crow mode illustrates the
importance of the influence of the three-dimensional instabilities on the evolution of the
vortex pair/ground plane system. As the optimal amplification for the long-wavelength
modes is primarily concentrated on the secondary vortices, the optimal development of
the secondary vortex tongues is key to energy growth post secondary vortex ejection.
Even at the small perturbation amplitude, the modified long-wavelength mode exhibits
large growth of the vortex tongues, as well as their complex interaction at the plane of
symmetry.

At larger initial perturbation amplitudes, the energy gain of the modes is suppressed
and saturates, and is associated with the evolution of the secondary structures and their
importance in the breakdown of the primary vortex pair. The resultant nonlinear dynamics
are comparable to the horizontal and vertical ring modes observed experimentally by
Asselin & Williamson (2017) for the kb = 0.75 and the kb = 1.57 modes, respectively.
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The linear growth of the elliptic mode is not as strongly altered by the wall, with the
out-of-wall optimal mechanism still governing optimal growth after wall interaction. This
mode, detailed by Donnadieu et al. (2009), consists primarily of a symmetric amplification
of w, at the trailing hyperbolic point and along the upper half of the Kelvin oval.
The response promotes the elliptic-type core deforming instability in the primary pair
as the vortices approach the wall, with amplification of w, also playing a critical role in the
development of the instability. Similarly to the long-wavelength modes, the amplification
is strongest within the secondary vortices after wall interaction, and interacts with the
rolled up boundary layers at large times.

The direct numerical simulation demonstrates a strong deviation from the linear
predictions at even small finite amplitudes (A > 0.0002) after wall interaction. These
nonlinear effects are associated with the promotion of short-wavelength ‘waviness’ of the
primary vortices, which form two vortex tongues per wavelength upon wall interaction.
These tongues are qualitatively identical to the tongues observed in ring/wall evolution
and in the long-wave instability/wall dynamics, and interact at the symmetry plane
forming complex small-scale structures. The sensitivity of the elliptic mode to finite
perturbations is a consequence of the large linear energy gain the mode undergoes outside
of wall effect, resulting in larger core deformations and larger pressure gradients in the
vortex tubes upon ground interaction. In contrast to the linear predictions, for even small
perturbation amplitudes (A = 0.0002), (perhaps not surprisingly) the energy gains of the
three wavenumbers are of a similar order of magnitude in the nonlinear system for all
times. Finally, optimal perturbations which result in deviations from linear growth within
the time horizon studied, trigger rapid vorticity decay earlier than modal perturbations,
resulting in faster dissipation of the vortex pair.

In all cases, the angle, relative energy gain and instability mechanism of the initial
linear optimal amplifications is critical to the subsequent nonlinear development, growth
and interaction of the secondary structures. Linear amplification of the long-wavelength
secondary structures ultimately results in their dissipation at the wall, with finite amplitude
deviations illustrating the rise and interaction of secondary structures at the symmetry
plane. In turn, these play a primary role in the dynamics, and ultimately act to dictate the
trajectory and breakdown of the primary vortex pairs.
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