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a b s t r a c t

This study experimentally investigates the transverse flow-induced vibration (FIV) of an
elastically mounted cube at three different incidence angles of α = 0◦, 20◦ and 45◦,
corresponding to two centreplane mirror-symmetric cases and one asymmetric case.
The FIV response is characterised by analysing the vibration amplitude and frequency
responses, together with the fluid force coefficients and phases, over the reduced velocity
range of 1.2 ⩽ U∗ ⩽ 16. Here, U∗

= U/(fnwH), with U the free-stream velocity, fnw the
natural frequency of the system in quiescent fluid (water) and H the frontal projected
width of the body. It was found in the α = 0◦ case that two synchronisation regions
could be identified, where the periodic body vibration was synchronised with oscillatory
shear layers. The vibration amplitude was found to increase with U∗ in the second
synchronisation region, with the largest value of A∗

max ≃ 0.74 observed at the highest U∗

value tested. In the asymmetric orientation case of α = 20◦, a synchronisation region
occurred over 6.0 < U∗ < 8.6, where the amplitude tended to increase to its local peak
of A∗

max ≃ 0.25 at U∗
= 8.6. For higher U∗ values, synchronisation was lost, but the

cube still exhibited high amplitude oscillations. However, in the α = 45◦ case, while the
vibration amplitude tended to increase with U∗ (i.e. A∗

max ≈ 0.3 at U∗
= 16), the FIV

response was found to be desynchronised over the entire U∗ range. The findings indicate
that body vibration is strongly coupled with the oscillatory separating shear layers for
all α cases, which can result in significant vibration.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

This study reports on an experimental investigation of the transverse flow-induced vibration (FIV) of an elastically
mounted cube, where the flow is perpendicular to the vertical axis of the body, and the cube is constrained to move
in the cross-flow direction only. As such, this research falls under the broader framework of investigations of FIV of
bluff bodies. The prevalence and importance of FIV of structures in a variety of engineering applications, from being an
undesirable phenomenon on structures (e.g. offshore oil platforms, high-rise buildings) to a potential energy-harvesting
source (see Wang et al., 2017; Soti et al., 2018), has motivated numerous research works in the past half a century that
aim to characterise, predict and suppress/enhance FIV. Comprehensive reviews on the subject of FIV have been provided
by Blevins (1990), Sarpkaya (2004), Williamson and Govardhan (2004), Naudascher and Rockwell (2005) and Païdoussis
et al. (2010). Most of previous FIV studies have focused on two-dimensional cylindrical bodies. On the other hand,

∗ Corresponding author.
E-mail address: jisheng.zhao@monash.edu (J. Zhao).

https://doi.org/10.1016/j.jfluidstructs.2019.102701
0889-9746/© 2019 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.jfluidstructs.2019.102701
http://www.elsevier.com/locate/jfs
http://www.elsevier.com/locate/jfs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfluidstructs.2019.102701&domain=pdf
mailto:jisheng.zhao@monash.edu
https://doi.org/10.1016/j.jfluidstructs.2019.102701


2 J. Zhao, J. Sheridan, K. Hourigan et al. / Journal of Fluids and Structures 91 (2019) 102701

Fig. 1. Definition sketch for the transverse-only FIV of a cube. The hydro-elastic system is simplified as a 1-DOF system constrained to move in
the cross-flow direction: the oncoming free-stream velocity is denoted by U; the frontal projected width of the cube is denoted by H; the angle of
attack is denoted by α; the oscillating mass is denoted by m, the structural damping is denoted by c , and the structural stiffness is denoted by k;
Fx and Fy represent the drag and the transverse lift forces, respectively.

Fig. 2. Schematic of the experimental set-up from the side and back views. The cube is vertically (in z direction) supported by a rod that is mounted
to a force sensor coupled with the air-bearing system, with a single degree of freedom to vibrate transversely (in y direction) to a free-stream flow
(in x direction).

Table 1
The natural frequencies of the system at the three α values tested.
α H [mm] fna [Hz] fnw [Hz] ζ

0◦ 70.0 0.557 0.520 1.39 × 10−3

20◦ 89.9 0.275 0.256 2.57 × 10−3

45◦ 99.0 0.395 0.369 2.00 × 10−3

however, FIV of cubic structures has received much less attention, despite its importance in many engineering applications,
such as construction loads lifted on (tower) cranes, sling loads carried by helicopters, cable cars, vehicles, fish cages and
offshore platforms, where the structures may experience undesirable FIV phenomena in winds or ocean currents that can
affect the structural performance and even safety. Thus, apart from motivations arising from its practical importance of
the problem, the principal aim of the present investigation is to gain a fundamental understanding of the FIV mechanism
of a cube as a generic three-dimensional bluff body with sharp edges.

Since the pioneering experiments of Brooks (1960), FIV of cylindrical bluff bodies, including circular, D-section, square
and rectangular cross-sectioned cylinders, have been extensively studied (e.g. Feng, 1968; Bearman et al., 1987; Nakamura
et al., 1991; Khalak and Williamson, 1996, 1997; Govardhan and Williamson, 2000; Nemes et al., 2012; Massai et al., 2018;
Zhao et al., 2014a,b, 2018a). In particular, two different body oscillator phenomena typical of FIV, namely vortex-induced
vibration (VIV) and galloping, have been the focus of much of the prevalent research. VIV occurs as vortices are shed
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Fig. 3. The amplitude response and the logarithmic-scale normalised frequency power spectral density contours as a function of the reduced velocity
for the case of α = 0◦ . The vertical dashed lines represent boundaries between different FIV regions. Here the non-dimensionalised frequencies
correspond to: f ∗

y , the (normalised) transverse cube frequency; and f ∗

Cy , f
∗

Cv , f
∗

Cx are the frequencies corresponding to the total transverse force, the
vortex force and the streamwise force, respectively. All frequencies are normalised by the natural frequency of the system, fnw .

alternatively from sides of an elastic or elastically mounted body. These vortices, in turn, create a fluctuating pressure
distribution that can result in a significant vibration response over certain flow velocity ranges when the vortex shedding
frequency and the body vibration frequency are synchronised. To fundamentally characterise VIV, circular cylinders have
been adopted as a standard model, due to their geometric simplicity and axial symmetry that prohibits the occurrence of
another FIV form, namely galloping. On the other hand, structures with an axial asymmetry (e.g. D-section and square
cylinders) may be susceptible to galloping, as opposed to, or in combination with, VIV. Unlike VIV, which is excited by the
vortex shedding instability and thus exhibits limited vibration amplitude (generally of the order of one body diameter),
galloping is driven by unsteady aerodynamic forces that arise from the body movement and thus can result in large body
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Fig. 4. Fluid forces and phases (in degrees) as a function of the reduced velocity for the α = 0◦ case. Note that (a) revisits the amplitude response;
the two synchronisation regions are shaded grey, while the transition region is shaded light blue. The variables plotted as follows: the total and
vortex rms transverse force coefficients, C rms

y and C rms
v ; the total and vortex phase of these coefficients, φt and φν (in degrees); and the mean

downstream force coefficient, Cx . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

oscillations with the amplitude increasing with the flow velocity, and a frequency much lower than that of the vortex
shedding (Zhao et al., 2018a).

Recently, Nemes et al. (2012) found that for a square cylinder with low mass-damping ratio in water-channel
experiments, the FIV response exhibited three regimes in a parameter space of the flow incidence angle (α) and the
reduced velocity (U∗), namely a galloping regime at low angles of attack of 0◦ ⩽ α < 7.5◦, a combined VIV-galloping
regime at medium angles of attack of 10◦ < α ⩽ 22.5◦ and a VIV regime at high angles of attack of 25◦ ⩽ α ⩽ 45◦.
Note that the reduced velocity here is defined by U∗

= U/(fnwH), where U is the free-stream velocity, H is the frontal
projected width of the body, and fnw is the natural frequency of the system in quiescent fluid (water). Subsequently, Zhao
et al. (2014b, 2018c) provided further detailed analyses on the fluid–structure synchronisation and wake modes at three
representative α values of 0◦, 20◦ and 45◦ for the three FIV response regimes.

Much less attention has been paid to the FIV of three-dimensional geometries. The transverse FIV of a sphere, a generic
symmetrical three-dimensional prototype, was reported for the first time by Govardhan and Williamson (2005), showing
a VIV response over a wide U∗ range. On the other hand, even less research has been conducted on the problem of
flow past a cube, despite its practical importance in many engineering applications. Klotz et al. (2014) experimentally
studied the wake behind a fixed cube with a face normal to the flow over 100 ⩽ Re ⩽ 400, and observed two flow
bifurcations. This followed on from the numerical study of Saha (2004) and Saha (2006) who tracked the wake flow
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Fig. 5. Sample time traces for the α = 0◦ case at four selected reduced velocities: U∗
= 3.0 in (a), U∗

= 5.0 in (b), U∗
= 7.0 in (c) and U∗

= 10.0
in (d). It should be noted that ỹ∗ represents the fluctuation component of the normalised body displacement, namely ỹ∗

= y∗
− y∗ with y∗

= y/H
and y∗

= y/H (the time-averaged component); similarly, C̃y = Cy − Cy and C̃v = Cv − Cv .

transitions over a similar Reynolds number range. Interestingly, the post-transition wake states and transition Reynolds
numbers are a reasonable match for those of a sphere. The two-tailed and hairpin looped wake observed for a sphere
also occurs for the cube. However, Saha (2004) also showed that the force coefficients display some difference for those
of a sphere. In addition, in the near wake, there are weaker counter-rotating vortex pairs emanating from each of the
four downstream corners. Given these distinct similarities and differences between the two cases, it seems intriguing
to investigate the fluid–structure interaction of an elastically mounted cube with sharp edges, which, to the authors’
knowledge, has remained largely unknown.

The present study aims to examine the transverse FIV response of a cube at the aforementioned three angles of attack,
α = 0◦, 20◦ and 45◦, as a function of U∗. The selection of these representative angles of attack will allow a direct
comparison of the FIV responses of a cubic and its counterpart two-dimensional square cylinder. More specifically, it
experimentally characterises the structural response, fluid forces and near-field flow structures. The article proceeds by
describing the fluid–structure system modelling and the experimental details in Section 2. The results and discussion on
the structural vibration response are presented in Section 3. Finally, conclusions are drawn in Section 4.
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Fig. 6. Phase-averaged vorticity (top row) and swirling strength (bottom row) contours showing flow separations from the forward corners at (a)
U∗

= 1.4, (b) U∗
= 4.0 and (c) U∗

= 5.0 for α = 0◦ . The normalised vorticity range shown here is ω∗
∈ [−4, 4] (with 21 levels); the normalised

swirling strength range is ±λ2
ci ∈ [−0.35, 0.35] (with 21 levels). In each plot, the vertical line between two horizontal bars in red represents the

peak-to-peak vibration amplitude. See supplementary movies 1–3 for the full oscillation cycles. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

2. Experimental details

The fluid–structure system in the present study is modelled based on a linear mass–spring–damper (MSD) system with
one degree of freedom (1-DOF) to move transversely to an oncoming fluid flow, as schematically shown in Fig. 1. Thus,
the governing equation of motion is described by

mÿ + cẏ + ky = Fy , (1)

where m is the total oscillating mass of the system, c is the structural damping factor, k is the spring constant, y is the
body displacement, and Fy is the lift force of the fluid on the cube. Here, the dots placed over the variables indicate time
derivatives.

A schematic of the experimental setup is shown in Fig. 2. The MSD system was experimentally modelled by employing a
low-friction air-bearing system which provided low structural damping and precisely constrained the body motion to be in
the direction transverse to the oncoming free-stream. The structural stiffness was controlled by extension springs attached
to both sides of a slider carriage. More details and validation studies of the air-bearing system can be found in Wong et al.
(2017, 2018) and Zhao et al. (2018a,b). The cube model was vertically supported by a thin rod that was adapted to a force
sensor coupled with the carriage. The present experiments were conducted in the recirculating free-surface water channel
of the Fluids Laboratory for Aeronautical and Industrial Research (FLAIR) at Monash University, Australia. The test section
of the water channel has dimensions of 600 mm in width, 800 mm in depth and 4000 mm in length. The free-stream
velocity in the present experiments could be varied continuously over the range 50 ⩽ U ⩽ 450 mms−1 (see Zhao et al.,
2014a,b), while the free-stream turbulence level was found to be less than 1%.

The cube model used, which was precision machined from Acetal plastic, had a side width of D = 70 mm±0.010 mm.
The cylindrical support rod, made from tungsten carbide for extra stiffness and to maintain straightness, had a diameter of
3 mm, giving a ratio between the cube width and the support rod diameter of 23.3. The total immersed length of the rod
was L ≃ 175 mm (2.5D), which was set to minimise free-surface effects, according to the experiments by Mirauda et al.
(2014) and verified by Sareen et al. (2018b), which showed free-surface effects were negligible for flow past a sphere when
it was placed at least one diameter below the free surface. The total oscillating mass was m = 1746.4 g, and the displaced
mass of the fluid was md = ρπD3

= 342.9 g (with ρ the fluid density), giving a mass ratio of m∗
= m/md = 5.09. The

natural frequencies in both air (fna) and water (fnw) and structural damping ratio (ζ ) of the system were measured by
conducting free decay tests individually in air and in quiescent water. Table 1 shows the values of these parameters for
the three α values tested. Here, the structural damping ratio was determined with consideration of the added mass by
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Fig. 7. Phase-averaged vorticity contours at (a) U∗
= 3.0 from the Sync-I region, (b) U∗

= 7.0 from the transition region and (c) U∗
= 10.0 from

the Sync-II region of the α = 0◦ case. See supplementary movies 4–6 for the full oscillation cycles. For more details, refer to the caption for Fig. 6.

ζ = c/(2
√
k(m + mA)), where mA = ((fna/fnw)2 − 1)m is the added mass. It should be noted that the spring stiffness was

varied in order to achieve similar U∗ ranges for the α cases with different H values, which resulted in different values of
fna, fnw and ζ for the α cases.

The body displacement was measured using a non-contact digital optical linear encoder (model: RGH24; Renishaw,
UK) with a measurement range of ±200 mm and a resolution of 1 µm. While the drag force (Fx) was measured directly by
the force sensor (model: Mini40; ATI-IA, USA), the transverse lift force (Fy) acting on the vibrating body was determined
based on Eq. (1). This force sensor had an accuracy of 5 mN in both Fx and Fy. Details of the force measurement technique
have been given by Zhao et al. (2014b, 2018b). The measurements were sampled at 100 Hz for 300 s. More details of
the data acquisition system can be found in Wong et al. (2017) and Zhao et al. (2018b). In the present study, the FIV
response was investigated over the reduced velocity range of 1.2 ⩽ U∗ ⩽ 16. The corresponding Reynolds number range
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Fig. 8. Swirling strength contours at (a) U∗
= 3.0 from the Sync-I region, (b) U∗

= 7.0 from the transition region and (c) U∗
= 10.0 from the Sync-II

region of the α = 0◦ case. For more details, refer to the caption for Fig. 6.

was 2840 ⩽ Re ⩽ 36 595. Here, the Reynolds number based on the frontal projected width of the body is defined by
Re = UH/ν, with ν the kinematic viscosity of the fluid.

The near-wake flow structures were examined using the particle image velocimetry (PIV) technique. Since details of
the PIV system used have been provided by Zhao et al. (2018a,b), only a brief summary is presented here. The flow was
seeded with hollow micro-spheres (model: Sphericel 110P8; Potters Industries Inc.) having a nominal diameter of 13 µm
and a specific weight of 1100 kg m−3. The horizontal illumination laser sheet (3 mm in thickness) was produced using
a continuous laser (model: MLL-N-532-5 W; CNI, China). The PIV imaging was performed using a high-speed camera
(model: Dimax S4; PCO AG, Germany) with a resolution of 2016 pixel × 2016 pixel. This camera was equipped with a
50 mm lens (Nikon Corporation, Japan), giving a magnification factor of 7.51 pixels/mm for the field of view of interest.
For each PIV imaging case, a set of 3100 image pairs was captured at a sampling rate of 10 Hz for quantitative analysis. To
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Fig. 9. Hydrogen-bubble flow visualisations demonstrating flow impingement in the two synchronisation regions, compared with the negligible
vibration region: (a) U∗

= 3.0 (Sync-I), (b) U∗
= 4.0 (non-vibration region) and (c) U∗

= 10.0 (Sync-II) for α = 0◦ . See supplementary movies 7–9.

better understand the evolution of the wake structures, images of each set were sorted into 24 phases based on the body’s
displacement and velocity, yielding at least 120 image pairs for averaging. The PIV data was processed using validated
in-house PIV software developed by Fouras et al. (2008), with 32 × 32 pixel2 interrogation windows in a grid layout with
50% window overlap.

3. Results and discussion

3.1. Vibration response at α = 0◦

Fig. 3 presents the normalised body vibration amplitude (A∗) as a function of the reduced velocity for the α = 0◦ case,
together with the normalised frequency responses of the body displacement, the transverse lift, the vortex force and the
drag force, namely f ∗

y , f
∗

Cy , f
∗

Cv and f ∗

Cx . Note that the normalised amplitude is defined by A∗
= A/H , with A∗

max denoting the
local maximum value and A∗

10 denoting the mean of the top 10% values at a given U∗. The frequency components in Fig. 3
(b)–(e) are normalised by the natural frequency fnw (i.e. f ∗

= f /fnw), while the power spectral density (PSD) contours
are normalised by their local peak value and presented in logarithmic scale. In this study, the drag coefficient is defined
by Cx = Fx/( 12ρU

2HL), while the transverse lift and the vortex force coefficients are defined by Cy = Fy/( 12ρU
2HL) and

Cv = Fv/( 12ρU
2HL), respectively, where Fv = Fy − Fp, with Fp = −mAÿ the potential force (see Lighthill, 1986; Govardhan

and Williamson, 2000; Morse and Williamson, 2009; Zhao et al., 2014b).
As can be seen from Fig. 3(a), there are three vibration regions observed with significant body oscillations, namely

two synchronisation regions (Sync-I and Sync-II shaded grey) where the body vibration frequency is synchronised with
the transverse lift frequency, and one transition region (shaded light blue) where the fluid–structure system develops
gradually from a negligible vibration state to a synchronisation state (Sync-II) as U∗ is increased.

The first synchronisation region (Sync-I) occurs over the reduced velocity range of 1.8 < U∗ ⩽ 3.0, which is bounded
by two non-vibration regions on both sides. Upon the occurrence of synchronisation, the body vibration becomes highly
periodic with the body vibration frequency locking onto the natural frequency of the system in quiescent water (f ∗

y ≃ 1 in
Fig. 3(b)). As U∗ is increased, the vibration amplitude tends to increase to reach a local peak of A∗

≃ 0.09 at U∗
= 2.8, prior

to a sharp drop to A∗
≃ 0 at U∗

= 3.2. On the other hand, as shown in Fig. 5(b), the root-mean-square coefficient (rms)
of the transverse lift (C rms

y ) exhibits a ‘‘bell shape’’ over this region, increasing rapidly to reach its peak of C rms
y ≃ 0.48

at U∗
= 2.6 and afterwards decreasing sharply to its minimum (C rms

y ≃ 0.06) at U∗
= 3.2; however, no significant

changes are observed in the root-mean-square coefficient of the vortex force (C rms
v ≈ 0.09), which is different from other

cases of cylindrical bluff bodies exhibiting significant variations in C rms
v in their VIV lock-in regions (e.g. circular cylinders

in Zhao et al. (2014a), square cylinders in Zhao et al. (2014b), D-section cylinders in Zhao et al. (2018a)). Furthermore,
as shown in Fig. 4(c), the total phase (the phase angle between the transverse lift and the body displacement, denoted
by φt) remains consistent at 0◦ in the Sync-I region, while the vortex phase (the phase angle between the vortex force
and the body displacement, denoted by φv) undergoes a sharp jump from 0◦ to 180◦ at U∗

≈ 2.6, around which the
vortex force frequency response in Fig. 3(d) sees a narrow region exhibiting broadband components. It should also be
noted that the drag frequency response (Fig. 3(e)) in general exhibits broadband noise over the Sync-I region, indicating
that the drag force is highly aperiodic in this region. To demonstrate the vibration dynamics in the Sync-I region, Fig. 5(a)
presents sample time traces at U∗

= 3.0 as a representative reduced velocity. The above results suggest that the vibration
mechanism in the Sync-I region is likely to be different from that often seen with cylindrical bluff bodies. In fact, this
vibration region is found to be associated with flow impinging behaviour on both sides of the body, rather than the
near-wake vortex shedding. Further discussion will be given by examining the near-body flow structure through PIV
measurements.

The transition region occurs over the reduced velocity range of 5.6 < U∗ < 8.4. In this region, while the oscillation
amplitude tends to increase with U∗ (A∗

max ≃ 0.22 at U∗
= 8.4), the frequency response still exhibit broadband frequency

components. However, the dominant component of f ∗
y , f

∗

Cy and f ∗

Cv deviates from the trend of the Strouhal vortex shedding
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Fig. 10. The amplitude response and the logarithmic-scale normalised frequency power spectral density contours as a function of the reduced velocity
for the case of α = 20◦ . The synchronisation region is shaded grey, while the vertical dashed lines represent boundaries of the synchronisation
region.

frequency (St ≃ 0.107) and increases gradually towards fnw, and the dynamics also gradually becomes periodic (see
sample traces at U∗

= 5.0 and 7.0 for comparison in Fig. 5(b) and (c)). On the other hand, both C rms
y and C rms

v tend to
increase to reach their local peaks (C rms

y ≃ 0.28 and C rms
v ≃ 0.21) at U∗

= 8.4, while both φt and φv remain consistently
close to 0◦. Despite a notable increase in the vibration amplitude, Cx is found to decrease very slightly from 1.20 to 1.14
over this region.

Further increasing U∗ sees the second synchronisation region, Sync-II, where the body vibration amplitude continues
to increase to reach A∗

max ≃ 0.74 at the highest U∗ tested, while the vibration frequency appears to gradually lock onto fnw.
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Fig. 11. Fluid forces and phases as a function of the reduced velocity for the α = 20◦ case. Note that (a) revisits the amplitude response; the
synchronisation region is shaded grey.

Similar to the Sync-I region, the body vibration in this region is highly periodic. It is interesting to note that the frequency
responses of f ∗

Cy and f ∗

Cv exhibit weak harmonics at 2fnw and 3fnw which tend to become stronger as U∗ is increased. Unlike

the Sync-I region and the transition region, the f ∗

Cx response shows its dominant component at 2fnw, indicating that the
drag force becomes relatively periodic in this region. To demonstrate the vibration dynamics, Fig. 5(d) shows sample time
traces at U∗

= 10.0. Moreover, both C rms
y and C rms

v tend to decrease gradually, while Cx remains fairly stable at 1.14. It
should also be noted that both φt and φv remain close to 0◦. This implies that the FIV mechanism in this region is unlikely
to be galloping, since both φt and φv are out of phase with the body velocity by 90◦ (see Zhao et al., 2018a).

To understand better the flow structure associated with the FIV response regions, the near-body vorticity fields
and swirling strength contours in the x–y plane are analysed based on spot PIV measurements. Following the eigen-
decomposition of the three-dimensional local velocity gradient tensor (VGT) used by Zhou et al. (1996, 1999), an
equivalent two-dimensional form is given by Adrian et al. (2000) for computing the VGT of PIV data in the x-y
plane:

∇u =

⎛⎜⎜⎝
∂u
∂x

∂v

∂x
∂u
∂y

∂v

∂y

⎞⎟⎟⎠ , (2)
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Fig. 12. Sample time traces the α = 20◦ case at four selected reduced velocities: U∗
= 5.0 in (a), U∗

= 7.0 in (b), U∗
= 9.0 in (c) and U∗

= 12.0
in (d).

where u and v are the (normalised) streamwise and cross-flow velocities, respectively. The resulting eigenvalues are either
two real values (λr ) or a pair of complex conjugate values (λcr ± iλci, with λcr and λci the complex real and imaginary
parts, respectively) as follows:(

λr 0
0 λr

)
(3)

or (
λcr ± iλci 0

0 λcr ± iλci

)
. (4)

Thus, the swirling strength is given by λ2
ci, the square of the imaginary part of the complex conjugate eigenvalues (Zhou

et al., 1999), and its sign is set to match that of the local vorticity to indicate the rotation direction. Compared to vorticity,
swirling strength would be more useful to identify vortical structures (e.g. small-scale vortices), by eliminating pseudo-
vorticity with no local spiralling motion, such as shear layers (see Zhou et al., 1999; Adrian et al., 2000; Chen et al.,
2014).

Fig. 6 shows the phase-averaged vorticity and swirling strength contours at three reduced velocities (U∗
= 1.4, 4.0 and

5.0) selected from the non-vibration regions. In these cases, the flow clearly separates from the forward corners, forming



J. Zhao, J. Sheridan, K. Hourigan et al. / Journal of Fluids and Structures 91 (2019) 102701 13

Fig. 13. Phase-averaged vorticity (top row) and swirling strength (bottom row) contours at (a) U∗
= 5.0, (b) U∗

= 7.0 and (c) U∗
= 12.0 of the

α = 20◦ case. See supplementary movies 10–12 for the full oscillation cycles. For more details, refer to the caption for Fig. 6.

two opposite-signed shear layers; however, there is neither flow reattachment observed, nor regular vortex shedding
as in the case of a square cylinder (see Zhao et al., 2014b). Fig. 7 shows the phase-averaged vorticity contours of three
representative cases for the Sync-I, transition and Sync-II regions, at U∗

= 3.0, 7.0 and 10.0, respectively. (Note that
animations of full oscillation cycles are provided in supplementary movies 4–6). In the case of U∗

= 3.0 shown in Fig. 7(a),
it can be seen that the body oscillation is associated with periodic shear layer impinging on the lateral sides of the cube.
These shear layers appear to be much shorter than those seen in the non-vibration regions. Furthermore, the impinging
shear layers interact with the backward corners of the body and break down further downstream. This is similar to the
findings from wind-tunnel experiments by Nakamura et al. (1991) who reported that weak excitation associated with
impinging-shear-layer instability occurred on a square cylinder at low reduced velocities centred around U∗

= 2.5. Such
an excitation is different from those of VIV and galloping, which are initiated by regular vortex shedding, at higher reduced
velocities (e.g. Nemes et al., 2012; Zhao et al., 2014b). In the case of U∗

= 7.0 from the transition region, the shear layers
formed from the forward corners appear to be oscillatory, and they tend to impinge on the lateral sides as the body
vibration increases with U∗. When U∗ is further increased to the Sync-II region, as shown in Fig. 7(c), the shear layers
exhibit periodic flapping behaviour on the body lateral sides and appear to have a stronger interaction with the trailing
corners than the case in the transition region. As a result, the flow structures downstream of the trailing corners appear to
be significantly different from those seen in the Sync-I region, leading to a different synchronisation (e.g. the f ∗

Cx response).
To better identify the near-body vortical structures, Fig. 8 shows the swirling strength contours of the aforementioned

U∗ cases. As can be seen, the swirling strength analysis also reveals that the Sync-I and Sync-II regions are associated
with flow impingement.

Further evidence of impinging behaviour of the shear layers is presented in Fig. 9, which shows hydrogen-bubble
flow visualisations at three different representative reduced velocities: U∗

= 3.0 for Sync-I and U∗
= 10.0 for Sync-II

as compared against U∗
= 4.0 for the non-vibration region. Note that the corresponding video records can be found in

supplementary movies 7–9. Clearly, it can be seen in the snapshots in Fig. 9(a, c) that the body vibration is associated
with shear layer impingement on the lateral sides of the cube in regions Sync-I and Sync-II, while in the case of negligible
body vibration in Fig. 9(b) the shear layers are evidently separated from the body. These results are in accordance with
the PIV measurements.

By contrast, the transverse FIV response of a cube at α = 0◦ is distinctly different from those of a square cylinder
and a sphere. Bearman (1984) noted that vortex shedding behind a constant cross-section bluff body is reduced as the
aspect ratio is reduced, and thus the forces generated by vortex shedding may become too weak to cause any significant
oscillations for low-aspect-ratio bluff bodies; for example, Wootton (1969) observed in wind-tunnel experiments that
significant VIV response was unlikely to occur for a circular cylinder with an aspect ratio less than 8. When compared
against its counterpart square cylinder, the oscillating cube exhibits a distinctly different manner of vortex shedding,
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Fig. 14. The amplitude response and the logarithmic-scale normalised frequency power spectral density contours as a function of the reduced
velocity for the case of α = 45◦ .

where the two oppositely-signed shear layers appear to be well separated in the wake (e.g. Fig. 7(c)), while the square
cylinder displays a regular vortex shedding mode with the shear layers strongly interacting to form a vortex street (see
their figure 8 in Zhao et al. (2014b)). This difference is unsurprisingly expected as the vortex shedding of an fully immersed
cube is three-dimensional, with the lateral shear layers affected by those formed from the top and bottom sides, thus
resulting in a FIV response distinctly different from that of its counterpart square cylinder. Furthermore, the FIV response
of a cube is also significantly different from that of a sphere. For example, the VIV of a sphere exhibits a typical amplitude
jump when the body vibration frequency is close to the vortex shedding frequency of the static body at U∗

≈ 1/St ≈ 5.
However, the cube exhibits an isolated lock-in region (Sync-I) at much lower reduced velocities, despite the fact that a
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Fig. 15. Fluid forces and phases as a function of the reduced velocity for the α = 45◦ case.

second lock-in region occurs for U∗ ⩾ 8.4 when the body vibration frequency approaches the Strouhal vortex shedding
frequency. From the wake measurement results, it is evident that the mechanism driving the body vibration of a cube is
different from that of a sphere: the transverse vibration of a cube is strongly associated with the shear layers that separate
from the leading edges and impinge on the lateral sides of the body, while the sphere vibration is due to a counter-rotating
vortex pair in the wake.

3.2. Vibration response at α = 20◦

Fig. 10 shows the amplitude and frequency responses as a function of the reduced velocity for the asymmetric case of
α = 20◦, while Fig. 11 shows the variations of the fluid force coefficients and the phases. Through an overall examination
of the above dynamic responses, a synchronisation region is identified over the reduced velocity range of 6.0 < U∗ < 8.6.
In this region, while the body vibration frequency is synchronised with the transverse lift frequency, the vibration
amplitude tends to increase gradually with U∗ (i.e. A∗

max ≃ 0.25 at U∗
= 8.6). Meanwhile, the C rms

y variation profile
exhibits a bell shape with its peak value of C rms

y ≈ 0.07 occurring at U∗
= 7.8. On the other hand, φt becomes more stable

close to 0◦ in this region. However, the f ∗

Cv response indicates that the vortex force is not periodic (see sample time traces
at U∗

= 7 in Fig. 12(b)), implying that the body vibration is most likely to be associated with the oscillation of shear layers.
At higher U∗ values outside the synchronisation region, considerable body oscillations (see Fig. 12(c, d)) are still caused
by oscillatory shear layers; however, the frequency responses indicate that there is no synchronisation present. On the
other hand, at low reduced velocities (U∗ < 6) outside the synchronisation region, the body exhibits random vibration
with extremely small amplitudes (see Fig. 12(a)).
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Fig. 16. Sample time traces of the α = 45◦ case at four selected reduced velocities: (a) U∗
= 5.0, (b) U∗

= 6.0, (c) U∗
= 12.0 and (d) U∗

= 14.0.

To demonstrate the near-field flow structure, Fig. 13 shows the phase-averaged vorticity and swirling strength contours
at U∗

= 5.0, 7.0, and 12.0, selected from different FIV response regions. In all cases, it is clear that the upper shear layer
separates from the top corner, while lower shear layer wraps around the lower side and then separates from the lower
trailing corner. The flow patterns in these cases appear to be highly similar. However, oscillatory behaviour of the shear
layers can be seen in the supplementary movies; in particular, vortex structures can be seen being shed off the shear
layers at U∗

= 7 (in the synchronisation region) shown in supplementary movie 8. Again, unlike the cylinder case in Zhao
et al. (2014b), which exhibits much larger vibration amplitudes that are associated with a 2S or 2(2S) vortex shedding
mode, it is clear in the present case that the body vibration is due to the oscillatory shear layers.

3.3. Desynchronised vibration at α = 45◦

Fig. 14 shows the amplitude and frequency responses as a function of U∗ for the α = 45◦ case. As evidenced by the
frequency responses, the body vibration is desynchronised with the fluid forcing components over the U∗ range tested.
However, the vibration amplitude tends to increase with U∗ (A∗

max ≈ 0.3 at U∗
= 16), while the forcing components

C rms
y and C rms

v fluctuate around 0.06 over the entire U∗ range (Fig. 15(b)). Moreover, similar to the case of 20◦, the drag
coefficient Cx remains consistently close to 0.9.
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Fig. 17. Phase-averaged vorticity contours (top row) and swirling strength (bottom row) at (a) U∗
= 3.0, (b) U∗

= 6.0 and (c) U∗
= 14.0 of the

α = 45◦ case. See supplementary movies 13–15 for the full oscillation cycles. For more details, refer to the caption for Fig. 6.

Fig. 16 shows sample time traces of the dynamic components at four selected velocities, U∗
= 5, 6, 12 and 14. In all

cases, the dynamics appears to be highly aperiodic, consistent with the frequency responses in Fig. 14.
Fig. 17 shows the near-field vorticity and swirling strength contours from phase-averaged PIV measurements at

U∗
= 3.0, 6.0 and 14.0. As can be seen in all cases, two opposite-signed shear layers separate from the upper and lower

sharp corners, and they appear to be oscillatory (see supplementary movies 10–12). However, the oscillatory shear layers
are not synchronised with the body vibration.

Similar to the cases of α = 0◦ and 20◦, the FIV response at α = 45◦ is also distinctly different from its cylinder
counterpart that has been known to experience VIV response over a similar U∗ range. Indeed, the results presented have
indicated that the aspect ratio (of the body length to the side width) plays an important role affecting the flow and thus
the dynamics.

4. Conclusions

This paper presents an experimental investigation on the transverse FIV of a cube at three angles of attack, α = 0◦,
20◦ and 45◦, over a reduced velocity range of 1.2 ⩽ U∗ ⩽ 16.

At α = 0◦, it was found that the FIV response exhibits three vibration regions with significant oscillation amplitudes,
namely the synchronisation Sync-I region (over 1.8 < U∗ ⩽ 3.0), the transition region (over 5.6 < U∗ < 8.4),
and the synchronisation Sync-II region (for U∗ > 8.4). In the Sync-I region, highly periodic body oscillations were
encountered, with the oscillation frequency locked onto fnw. The local amplitude peak was found to be A∗

max ≃ 0.09.
The PIV measurements revealed that the body vibration is synchronised with periodic shear layer impinging behaviour,
rather than regular well-defined vortex shedding as previously reported in the case of a square cylinder. After the Sync-I
region, the system exhibited a ‘‘non-vibration’’ region, where the shear layers remained well separated from the forward
corners, without reattachment onto the body. As U∗ was increased, the shear layers tended to become oscillatory in the
transition region, causing the body to vibrate. Further increasing U∗ led to synchronisation between the body vibration
and the shear-layer flapping in the Sync-II region. In this region, the vibration amplitude was observed to increase with
U∗, i.e. A∗

max ≃ 0.74 at the highest U∗ value tested.
For the asymmetric case of α = 20◦, a synchronisation region was observed to occur over 6.0 < U∗ < 8.6, where

the body vibration frequency was synchronised with the transverse lift frequency. In this region, the vibration amplitude
tended to increase with U∗, i.e. A∗

max ≃ 0.25 at U∗
= 8.6. From the PIV measurements, it was found that the body

vibration is due to oscillatory shear layers from which some vortex structures are shed off. However, at higher U∗ values
outside this region, although the oscillatory shear layers still caused the body to vibrate with considerable amplitude, the
synchronisation disappeared.



18 J. Zhao, J. Sheridan, K. Hourigan et al. / Journal of Fluids and Structures 91 (2019) 102701

For the α = 45◦ case, similar to the other two α cases, the body vibration is caused by the oscillatory shear layers,
but remains desynchronised through the entire U∗ range tested. The vibration amplitude was found to increase with U∗,
with the largest value of A∗

max ≈ 0.3 observed at U∗
= 16.

The findings presented have indicated that the body vibration is strongly coupled with the oscillatory shear layers
which can result in significant vibration amplitudes. This study reveals that the FIV response of a cube is significantly
different from its cylinder counterpart, the square cylinder. Interestingly, it is also distinctly different from that of a 1-
DOF sphere even though the intermediate downstream wakes of non-oscillating spheres and cubes display similar wake
structures. The closest match to the sphere FIV response was seen for the α = 20◦ case, which shows a reduced VIV
response over a similar reduced velocity range. In some sense, this appears to be related to the VIV response seen for
a rotating sphere (Sareen et al., 2018a) where the rotation breaks the centreline mirror symmetry, causing a similar but
reduced VIV response compared to a non-rotating sphere. The results here indicate the importance of the separating shear
layers in the FIV response, while the absence of rotational symmetry seen for the circular cylinder or sphere cases allows
a galloping response. Both these aspects alter the vibration response considerably.

Noting the importance of the separating shear layers, and the observed differences from the FIV response of cylinders
and spheres, further work seems warranted to investigate the effect of the axial aspect ratio of a variable-span length
square cross-section body.
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