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1. Introduction

In this study, we review the recent developments in the understanding of the wake of an isolated rotating cylinder in
freestream at low Reynolds numbers. The flow is a function of two parameters: the flow Reynolds number (Re) and non-
dimensionalised rotation rate («). The Reynolds number is given by Re = UD/v, where U is the incoming freestream velocity,
D is the cylinder diameter and v is the kinematic viscosity of the fluid. The rotation rate is defined by « = ¥D/2U, where o is
the angular velocity of the cylinder. The rotation rate is also equivalent to twice the ratio of the surface speed of the cylinder
to the freestream velocity. In this paper, we examine the various flow transitions that occur for « <7 and Re < 400.

The wakes from a non-rotating circular cylinder in the low Reynolds number range, together with the various transitions
that occur, have been extensively documented. Amongst others, a comprehensive review detailing the steady and unsteady
regimes has been presented by Williamson (1996a). Unsteady flow is observed on increasing the Reynolds number past
Re ~ 47, which is characterised by the shedding of vortices alternately from the top and bottom separating shear layers to
form a vortex street. This is commonly referred to as Bénard-von Karman shedding. On further increasing the Reynolds
number, secondary three-dimensional vortices begin to form on the otherwise two-dimensional wake at Re ~ 190. The
wake vortices develop spanwise waviness of approximately four cylinder diameters, and this state is referred to as mode A
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shedding (Williamson, 1988). Another three-dimensional mode, mode B, appears with a spanwise wavelength of 0.8D on
further increasing the Reynolds number above Re=230-240 (Williamson, 1988; Wu et al., 1996a, 1996b, 1994). Numerical
investigations by several research groups (e.g., Barkley and Henderson, 1996; Thompson et al., 1996; Zhang et al., 1995)
observed the associated three-dimensional structures. Mode A is observed to grow primarily in the vortex cores, while
mode B grows in the braid shear layers connecting the opposite-signed vortex cores. These two modes do not introduce any
secondary frequencies in the wake, although in their saturated state they do modify the primary wake frequency slightly.
The analogues of modes A and B have also been detected in the wakes of other bluff bodies, such as square cylinders
(Robichaux et al., 1999) and elongated bluff bodies (Ryan et al., 2005).

Other modes which do introduce new frequencies have also been observed in the wakes of bluff bodies. These modes are
quasi-periodic in nature, and the secondary frequencies can be due to modulated standing waves or due to travelling waves
in the spanwise direction. Because of their quasi-periodic nature, they have been referred to as QP modes (Blackburn and
Lopez, 2003; Blackburn et al., 2005).

Another three-dimensional mode can be observed when the wake symmetry is altered, as in the wakes behind tori of
different aspect ratios (Sheard et al., 2004a, 2004b, 2005), inclined square cylinders (Sheard et al., 2009; Sheard, 2011), and
the asymmetric wakes found behind oscillating cylinders (Leontini et al., 2007). Typically, this mode has a spanwise
wavelength between modes A and B and is 2T periodic (i.e., subharmonic), where T is the period of vortex shedding. It is
referred to as mode C, and was also observed for a non-rotating cylinder when a trip wire was placed in the wake (Zhang
et al., 1995; Yildirim et al., 2013a, 2013b) for 165 < Re < 300.

Cylinder rotation brings about asymmetrical wake flow, leading to a net lift force. This is commonly known as the
Magnus effect (Prandtl, 1926). Flow past rotating cylinders at low Reynolds numbers has been investigated by several
research groups (Mittal and Kumar, 2003; Stojkovi¢ et al., 2002, 2003; Kang et al., 1999; Akoury et al., 2008; Pralits et al.,
2010, 2013), who observed two distinct shedding regimes. At low rotation rates (« < 2), the classical Bénard-von-Karman
(BvK) vortex street is observed (also known as mode I shedding), where vortices are shed alternatively. The second shedding
regime (also known as mode Il shedding) occurs at higher a over a narrow band. In this regime, single-sided vortex shedding
occurs with a period much longer than for mode I shedding. Recent experimental investigations by Kumar et al. (2011) and
Balcarova (2011) confirmed the existence of these two shedding regimes.

Very few investigations have been carried out on the development of three-dimensionality in rotating cylinder wakes.
Three-dimensional DNS was performed by Akoury et al. (2008) at low rotation rates of « < 1.5. They observed that the onset
of the mode A instability was delayed to higher Reynolds numbers as the rotation rate was increased. At «=0.5, the critical
Reynolds number was predicted to be approximately 220, and at a=1.5, Re=200, the flow remained two-dimensional.
Mittal (2004) performed three-dimensional simulations at =5, Re=200 with different end conditions and observed small
spanwise structures, which were possibly due to centrifugal instabilities. Stability analysis and three-dimensional
simulations were performed by Meena et al. (2011) at higher rotation rates; these showed that the flow was unstable to
perturbations for 3 <a <5 at Re=200.

Recent numerical investigations by Rao et al. (2013a, 2013b) showed several three-dimensional modes becoming
unstable to spanwise perturbations in the steady and unsteady regimes of flow for Re < 400. Five three-dimensional modes
were found to be unstable in the mode I shedding regime, while four three-dimensional modes were observed in the steady
regimes of flow for « > 2. The saturated state of these modes has been observed experimentally by Radi et al. (2013). The
experimentally observed modes were in excellent agreement with those observed in the numerical simulations.

In this study, we review and present results from the linear stability analysis and present some comparative
experimental visualisations. The remainder of this paper is organised as follows. In Section 2, the numerical formulation
and the experimental setup are described, followed by the results from the stability analysis and a direct comparison to the
experimental visualisations in Section 3. The conclusions summarise and provide a perspective on the findings.

2. Methodology
2.1. Numerical formulation

A spectral-element formulation was used to discretise the incompressible Navier-Stokes equations in two dimensions.
The computational domain consists of quadrilateral macro-elements, which are further subdivided using internal node
points distributed according to the Gauss-Legendre-Lobatto quadrature points. The velocity and pressure fields are
represented by tensor products of Lagrangian polynomial interpolants. For smooth problems, as the polynomial order is
increased, spectral convergence is achieved (Karniadakis and Sherwin, 2005). An unsteady solver employing a fractional
time-stepping method was used to integrate the convection, pressure and diffusion terms of the Navier-Stokes equations.
More details of this solver can be found in Thompson et al. (2006).

To investigate the three-dimensional stability of the flow to spanwise perturbations, linear stability analysis was
employed. The linear stability equations were marched forward in time for initially random perturbations for a given
wavelength. After some time, only the first few dominant amplifying or decaying modes remain. This method was used to
obtain the fastest growing modes, and has previously been used to determine the onset of three-dimensionality for a variety
of different problems, including oscillating cylinders (Leontini et al., 2007; Lo Jacono et al., 2010; Leontini et al., 2013) and
rotating cylinders near a wall (Stewart et al., 2006, 2010; Rao et al., 2011). For a periodic base flow, the amplification factor of
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a mode over a period is known as the Floquet multiplier (x), and it provides a measure of the growth of the perturbation.
If |u| > 1, the instability mode grows, and for |u| < 1 it decays. Neutral/marginal stability occurs for |u| = 1. The same process
can be applied for steady base flows, which have an essentially arbitrary period.

The computational domain used in this study consisted of the cylinder in the centre, with the inlet, outlet and lateral
boundaries being 100D from the cylinder to reduce blockage effects. Spatial resolution studies carried out on these domains
at Re=400 indicated that the solutions converged for a spatial resolution of N> = 82, where N is the number of internal node
points on each side of a macroelement. The force histories and shedding frequencies computed in the steady and unsteady
regimes of flow were in good agreement with previous literature. These resolution studies are detailed in Rao et al. (2013a,
2013b).

2.2. Experimental setup

The experimental setup consisted of a stiff carbon-fibre cylinder of 5.8 mm diameter driven by a stepper motor in the
FLAIR open surface water channel. The wetted length of the cylinder in the channel was approximately 130 times the
cylinder diameter. The cylinder wobbling was kept within 2.5% of the cylinder diameter even for high rotation rates of a=5.
This is within acceptable limits to not unduly influence the flow behaviour (Mittal, 2001). A platinum wire (50 pm)
positioned five cylinder diameters upstream and parallel to the main cylinder axis was used for the generation of a sheet of
hydrogen bubbles. The sheet passed the rotating cylinder and was entrained by the near wake, making the three-
dimensional structures visible. A continuous laser sheet was used for illumination. The images were recorded with a digital
camera and numerically processed to extract information on wavelengths and mode symmetries. More details on the
experimental setup are described in Radi et al. (2013).

3. Results
3.1. Parameter space

The parameter space investigated in this study covers the ranges 0 <« <7 and 0 < Re < 400. Fig. 1(a) shows the marginal
stability curves for the many transitions on the Re,« plane. On this parameter map (i) transitions between steady states,
(ii) transitions from a steady state to an unsteady state, and (iii) transitions from two-dimensional flow to three-dimensional
flow, are marked. At each rotation rate, the critical values were obtained by interpolation between values of || at a,Re
points in the vicinity of the transition.

Fig. 1(a) can be roughly divided into three areas, depending on rotation rate. At lower rotation rates (a« < 1.3), the
transition scenario is similar to that observed for a non-rotating cylinder, where with increasing Re, the flow undergoes
transition to an unsteady state (BvK vortex shedding) from a steady state, followed by the transition to three-dimensionality
via mode A, followed by a second possible three-dimensional transition to mode B at higher Reynolds numbers (Williamson,
1996b; Barkley and Henderson, 1996; Thompson et al., 1996).

For moderate rotation rates 1.5 < « < 2, multiple three-dimensional modes (modes C, D and G) that are not present in the
stationary cylinder case bifurcate from the two-dimensional vortex shedding flow.

For high rotation rates « > 2, the BvK vortex shedding is suppressed, and is replaced by steady state I. A second single-
sided vortex shedding mode, named mode II shedding, occurs over a small range of «, bifurcating from steady state I. (Rao
et al,, 2013a; Kang et al., 1999; Pralits et al., 2013; Stojkovic¢ et al., 2002, 2003). The exact range is a function of Re. However,
this two-dimensional single-sided shedding is predicted in a region of the parameter space where steady state I has already
been through a bifurcation to a three-dimensional state, and so it is unclear as to how this single-sided shedding will
physically manifest. Two three-dimensional modes grow on steady state I, being modes E and F.

At even higher rotation rates a > 5, steady state I is replaced by steady state II. Two three-dimensional modes, mode E’
and mode F, are found to grow on this steady state. In Fig. 1(a), the existence region for mode E’ is bounded by a dashed line
to indicate that its computed growth rate is very sensitive to computational domain size.

The regions where these modes are unstable are marked by unique colours on the parameter space plots in Fig. 1(c)-(i).
These smaller images were used to obtain the composite diagram, Fig. 1(a).

In the following sections, the steady two-dimensional base flows of interest are described. Then, details of the three-
dimensional modes bifurcating from these steady flows and the BvK vortex shedding are provided. These details are
supplemented by the three-dimensional reconstruction of the modes and their saturated experimental counterparts
obtained from flow visualisation experiments.

3.2. Steady state I and Il

Two distinct steady states are observed in the wake of a rotating cylinder as described by Mittal and Kumar (2003) and
Pralits et al. (2010). These two steady states can be distinguished by the structure of the wake, streamwise location of the
stagnation point and the mean drag coefficient. The boundary of demarcation of the two steady states extends to higher
rotation rates at lower Reynolds numbers. As detailed in Rao et al. (2013b), the shear layers in steady state I form a “tail-like”
structure, while the steady state II wake is distinguished by shear layers wrapped around the rotating cylinder.
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Fig. 1. (a) Marginal stability diagram of the Re, « parameter space, showing the various bifurcations for a« < 7, Re < 350. Regions of unsteady flow, and the
regions of instability of three-dimensional modes A-F’ are assigned a unique colour as shown in subfigures (b)-(i), which make up the composite image (a).
Mode E’ is shown by dashed lines to indicate that the boundary of this mode is very sensitive to the computational domain size. Mode G occurs at discrete
locations and is not shown here. (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this paper.)
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Fig. 2. Visualisation of the two steady states at =6.25. Base flow vorticity contours between levels +4D/U are overlaid with streamlines for steady state I
at Re=25 (a) and steady state Il at Re=40 (b). The stagnation point (xs/D) is denoted by filled circles (e) while cross-hairs mark the centre of the cylinder.
Flow is from left to right, with the cylinder rotating anticlockwise.

The stagnation point, which lies above the cylinder, moves upstream as the flow undergoes transition from steady state I
to steady state II. This is accompanied by a change in mean drag coefficient.

Shown in Fig. 2 are the base flow vorticity contours at a=6.25. In steady state I, the shear layers form a tail-like structure,
with the stagnation point (x;/D) downstream of the cylinder at Re=25, while steady state Il shows the shear layers wrapped
around the cylinder and the location of the stagnation point upstream of the centre of the cylinder.

3.3. Mode A instability

For a non-rotating cylinder, the mode A instability was first characterised through the experimental investigations of
Williamson (1988), and was subsequently predicted by the linear stability analysis of Barkley and Henderson (1996). For
0 <a 5 1.25, mode A is the first three-dimensional mode to become unstable to spanwise perturbations; however, the onset
of the mode A instability is delayed to higher Reynolds numbers as the rotation rate is increased. At higher rotation rates,
mode A co-exists with other three-dimensional modes. The Floquet multiplier is real and positive, and the spanwise
wavelength for this instability is 4 ~4D. The physical mechanism of this instability has previously been attributed to an
elliptic instability of the forming vortex cores (Leweke and Williamson, 1998; Thompson et al., 2001).

Shown in Fig. 3(a) and (c) are the spanwise perturbation vorticity contours at values close to the maximum growth rate
and the three-dimensional reconstruction of this mode from the linear stability analysis, respectively. An experimental
visualisation is shown in Fig. 3(e) for a non-rotating cylinder at Re=175. For a« < 1, mode A was very difficult to visualise in
the experiments, although it may have contributed to the early transition of mode B.

3.4. Mode B instability

At the same rotation rate, the mode B instability becomes unstable at Reynolds numbers higher than that for the mode A
instability. Similar to mode A, the onset of mode B is delayed to higher Reynolds numbers as the rotation rate is increased
from a=0 to a=1. The characteristic wavelength of this instability is 4 ~ 0.8D and its Floquet multiplier is real and positive.

Shown in Fig. 3(b) and (d) are the spanwise perturbation contours and a three-dimensional reconstruction, respectively.
Significant perturbation amplitude is apparent in the strained braid regions between the vortex cores. Fig. 3(f) shows an
experimental visualisation of the mode B instability at Re=275.

3.5. Mode C instability

As the rotation rate is increased to « > 1.3, the wake becomes clearly asymmetric. Wake asymmetry has previously been
known to give rise to a subharmonic mode, termed mode C (Blackburn and Sheard, 2010). This mode has previously been
observed in the wake of a torus (Sheard et al., 2003, 2004a, 2005), inclined square cylinders (Sheard et al., 2009; Sheard,
2011) and in the wake of non-rotating circular cylinders using a trip wire (Zhang et al., 1995; Yildirim et al., 2013b).

Mode C becomes unstable for 1.5 < a < 1.85 for Re > 240 and exists in a nearly closed region of the parameter space. The
Floquet multiplier is purely real and negative, indicating its precise subharmonic nature.

Visualisations of the spanwise perturbation vorticity taken one period apart for a=1.7, Re=275 show that the contours
alternate in sign, as shown in Fig. 4(a) and (b). Fig. 4(d)(i) and (ii) shows the experimental visualisation at the same point in
the parameter space, while Fig. 4(c)(i) and (ii) shows the three-dimensional reconstruction of the mode one period apart.
These diagrams indicate that the vortices are shifted by half a wavelength along the spanwise direction over each base flow
period, thereby showing the 2T periodicity of this mode.
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Fig. 3. (a), (b) Visualisation of the spanwise perturbation vorticity contours for the mode A and mode B instability at the rotation rates and Reynolds
numbers specified. Perturbation vorticity contour levels in (a) and (b) are between + 0.1D/U (although arbitrary), with base flow vorticity contours
between levels + 1D/U overlaid. Flow is from left to right in these images, with the cylinder rotating anticlockwise. A dashed line downstream and through
the centre of the cylinder is drawn to show the wake asymmetry. Images (c) and (d) show the three-dimensional reconstruction of the above cases for
modes A and B, respectively, in plan view. Hydrogen bubble flow visualisations for the non-rotating cylinder are provided in the next two images. The first
(e) shows mode A at Re=175 with Ay /D ~ 3.5, while (f) shows mode B at Re=275 and Zexy /D ~ 0.96 (f). Images (c), (e) and (d), (f) are on the same scale,
with flow from the bottom to the top. The platinum wire is positioned downstream of the cylinder in (e) and (f). Experimental images are reproduced from
Radi et al. (2013). (a) @=0.75, Re=240, //D=3.75 and (b) «=0.75, Re=320, 4/D=0.8.

3.6. Mode D and E instabilities

The mode D instability occurs on an unsteady base flow in a small region of the parameter space for a > 1.9. This mode is
associated with high frequency shedding of vortices, which are formed in the strained shear layers. This mode has a positive
real Floquet multiplier, with its spatio-temporal characteristics similar to the mode A instability. However, the spanwise
wavelength is 4 ~ 2D.

Fig. 5(a) and (c) shows the spanwise perturbation vorticity contours at values close to the maximum growth rate and the
corresponding three-dimensional reconstruction, respectively, while Fig. 5(e) shows the experimental flow visualisation of
the mode D instability with a laser sheet illuminating the shed vortices.

The mode E instability occurs on the steady base flow at rotation rates of a« > 2. This three-dimensional mode has a purely
real and positive growth rate, with a spanwise wavelength of 4~ 2D. In terms of mode shape, it appears very similar to
mode D, except that it occurs on a steady base flow, and hence it is presumably an extension of mode D into the steady base
flow regime. The variation of the critical Reynolds number at higher rotation rates has previously been shown in Rao et al.
(2013b) and Pralits et al. (2013).
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Fig. 4. (a), (b) Visualisation of the spanwise perturbation vorticity contours for the mode C instability at =1.7, Re=275, A/D = 1, showing the subharmonic
character. Contour shading as per Fig. 3. Flow is from left to right in (a) and (b), with the cylinder rotating anticlockwise; while (c) shows the three-
dimensional reconstruction of (a) and (b) over two consecutive periods. The experimental visualisation of the mode C instability at a=1.7, Re=275, over
z/D =15 is shown in (d). The black line in (c) and the white line in (d) can be used as a guide to follow the same spatial location in (i) and (ii), respectively.
In both these cases, the secondary vortices are shifted by half a wavelength in the spanwise direction. The flow is from bottom to top in (c¢) and (d). (a) t=to,
(b) t=to+T.

Fig. 5(b) and (d) shows the perturbation vorticity contours at values close to the maximum growth rate and the three-
dimensional reconstruction of the mode E instability, respectively. Fig. 5(f) shows the experimental visualisation of the
instability with the laser sheet illuminating the elongated shear layers.

The instability mechanisms of mode D and mode E are believed to be due to a hyperbolic instability in the strained shear
layers in the near wake of the cylinder, as has been examined and discussed in Rao et al. (2013a, 2013b). At higher rotation
rates (a > 5.3), the onset of the mode E instability occurs at increasingly lower Reynolds numbers (Re. < 50). However, mode
E remains unstable over a narrow range of Reynolds numbers at these high rotation rates, and stabilises prior to the
transition to steady state II.

At lower rotation rates (« 5 1.9), where the base flow is naturally unsteady due to BvK vortex shedding, an artificially
stabilised steady two-dimensional base flow was obtained using a steady spectral-element solver. The resulting flow is
steady state I. The existence of mode E was tested on this base flow. Shown in Fig. 6 are the spanwise perturbation contours
of mode E in this stabilised range. These previously unpublished results, along with the data shown in Fig. 7, indicate that
the critical Reynolds number for the onset of mode E over this stabilised range (a < 1.9) monotonically decreases from
Re.~ 190 at a ~ 1.9 to Re. ~ 100 at a« = 0. The critical spanwise wavelength increases with decreasing « in this range.

Combining these previously unpublished results with the results from Rao et al. (2013b), the overall variation of the
critical spanwise wavelength and Reynolds number for the mode E instability is shown in Fig. 7(a). The critical Reynolds
number increases on increasing the rotation rate from Re; ~ 95 at a=0 to Re. ~ 330 at a = 2.5, before decreasing to lower
values with further increases in rotation rate (Re. ~ 30 at « = 6.15). However, the critical spanwise wavelength decreases on
increasing the rotation rate from 2/D ~6 at « =0 to 1./D ~ 1.4 at a ~ 2.5, before increasing to very high values with further
increases in rotation rate (4/D ~ 12 at a = 6.15). The three-dimensional reconstruction of the mode E instability (Fig. 7(b)—(h))
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Fig. 5. (a), (b) Visualisation of the spanwise perturbation vorticity contours for the mode D and mode E instabilities at the specified parameters. Contour
shading as per Fig. 3. Flow is from left to right in (a) and (b) with the cylinder rotating anticlockwise. Images (c) and (d) show the three-dimensional
reconstruction of the modes in (a) and (b) in plan view, respectively. Experimental visualisations of the modes D and E at the specified parameters are
shown in (e) and (f). Flow is from the bottom to the top in images (c), (d), (e) and (f), and these images are visualised for a spanwise distance of z/D = 48.
Experimental images are reproduced from Radi et al. (2013). (a) a=1.9, Re=280, /D=2, (b) a=2, Re=280, /D=2, (e) a=1.9, Re=250, Aex,/D ~ 2 and (f)
a=2.1, Re=250, Aexp/D ~ 1.8.

(b)

Fig. 6. Spanwise perturbation vorticity contours of the mode E instability at the specified values of rotation rates and Reynolds numbers. Contour shading
as per Fig. 3. Flow is from left to right and the cylinder is rotating anticlockwise. (a) a=0, Re=100, /D = 6. (b) =0.5, Re=100, 1/D = 5.5. (c) =1, Re=120,
2/D=5.(d) =15, Re=160, 1/D =3.

over a spanwise distance of 18D shows this variation. The maximum value of the critical Reynolds number and the minimum
value of the critical spanwise wavelength both occur at the value of the rotation rate at which there is a distinct change in base
flow. This distinct change is the disappearance of the upper recirculation region in the wake as the rotation rate is increased
beyond this value (Rao et al.,, 2013b).

Closer examination of Fig. 6(a) reveals that the perturbation contours show high amplitude in the shear layers in the
recirculation zone behind the cylinder. These contours resemble those observed for a non-rotating circular cylinder
translating along a solid wall (Rao et al., 2011; Stewart et al., 2006, 2010; Hourigan et al., 2013; Rao et al., 2013c, 2013d).
In those cases, the flow becomes three-dimensional prior to the onset of the unsteady flow. Furthermore, the spatio-
temporal characteristics of that mode and mode E are similar.

3.7. Mode F instability

The mode F instability develops on steady state I for rotation rates « > 2.25, and occurs at lower Reynolds numbers as the
rotation rate is increased. The spanwise wavelength at onset is 1 ~ 0.45D, and the stability multiplier is complex, indicating
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Fig. 7. (a) Variation of the critical spanwise wavelength (e) and critical Reynolds numbers (©) of the mode E instability with rotation rate. Figs. (b)-(h)
show the three-dimensional reconstruction of the mode E instability over a spanwise distance of z/D =18 at the specified parameter values: (b) a=0,
Re=100, 1/D=6, (c) a=1, Re=120, 2/D=4.5, (d) a=2, Re=220, i/D=2, (e) a=3, Re=220, 1/D=1.2, (f) a=4, Re=100, 2/D=1.8, (g) a=5, Re=65,
4/D=4.5 and (h) =6, Re=33, /D =9. Flow is from left to right in these plots and the cylinder is rotating anticlockwise.
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Fig. 8. (a) Visualisation of the spanwise perturbation vorticity contours for the mode F instability at «=2.25, Re=320, 1/D = 0.4. Contour shading as per
Fig. 3. Flow is from left to right in (a) with the cylinder rotating anticlockwise. The three-dimensional reconstruction of the mode in plan view is shown in

(b). An experimental visualisation of the mode D instability at a=2.3, Re=275, Aexp /D ~ 0.5 is presented in (c). Flow is from bottom to top in (b) and (c), and
these images are visualised for a spanwise distance of z/D ~ 12.8. The experimental image is reproduced from Radi et al. (2013).

that the mode oscillates, as either a standing or travelling wave along the cylinder span. The physical mechanism of this
three-dimensional mode has been attributed to a centrifugal instability (Rao et al., 2013a), with the perturbations growing
in the boundary layer of the rotating cylinder.

Shown in Fig. 8(a) and (b) are the spanwise perturbation vorticity and its three-dimensional reconstruction, respectively.
Fig. 8(c) shows the experimental flow visualisation at a« = 2.3, where this mode is believed to co-exist with mode E.

3.8. Mode F instability

Mode F grows on steady state Il base flow. With characteristics similar to the mode F instability, the three-
dimensionality grows in the entrained shear layers on the surface of the rotating cylinder. The critical Reynolds number
for the onset of mode F monotonically increases as the rotation rate is increased, with a corresponding decrease in the
spanwise wavelength. The stability multiplier associated with this mode is complex, suggesting a spanwise movement
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Fig. 9. (a)-(e) Visualisation of the spanwise perturbation vorticity contours for mode F" at «=5.25, Re=240, /D = 0.35. Contour shading as per Fig. 3. Flow
is from left to right in these images, with the cylinder rotating anticlockwise. Here (f) and (g) show the spanwise projection of mode F' in top and
perspective views, respectively, for a spanwise distance of 3.5D, corresponding to ten wavelengths of the instability. Flow is from bottom to top in (f) and
from left to right in (g). (a) t=to, (b) t=to+0.5T, (c) t=to+T, (d) t=to+1.5T, (e) t=to+2T, (f) top view and (g) perspective view.

@ (b)

Fig. 10. (a) Streamwise and (b) spanwise perturbation vorticity contours at a=6.15, Re=340, 1/D = 2.4, respectively. Contour shading as per Fig. 3.
(c) Three-dimensional reconstruction of the mode E’ instability for the above case visualised over a spanwise distance of 7.2D, corresponding to three
wavelengths of the instability. Flow is from left to right and the cylinder is rotating anticlockwise.

similar to mode F. These aspects have been quantified in Rao et al. (2013b). Shown in Fig. 9 are the spanwise perturbation
vorticity contours at ¢=5.25, Re=240. The spanwise movement of this mode means it repeats approximately, but not
exactly, every two base flow periods.

3.9. Mode E' instability

Mode E’ was observed at high rotation rates of « > 6.15 on steady state II base flow. It shares similar characteristics with
mode E instability of steady state I, including spatial distribution and general shape of the perturbation field, and spatio-
temporal symmetries. The critical Reynolds number for the onset of this mode decreases as the rotation rate is increased
while the critical spanwise wavelength at onset increases. For a given rotation rate, the values of the stability multiplier are
very close to unity over a large range of Reynolds numbers. Fig. 10(a) and (b) shows the streamwise and spanwise
perturbation contours at a=6.15, Re=340, 1/D = 2.4, respectively. The three-dimensional reconstruction of this mode is
shown in Fig. 10(c) in perspective view.
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Fig. 11. Spanwise perturbation vorticity contours at a=1.85, Re=300 for the spanwise wavelengths specified. Contour shading as per Fig. 3. Flow is from

(b)

left to right and the cylinder is rotating anticlockwise. (a) Mode G at 2/D = 20, ¢ = 1.002. (b) Mode A at 2/D =3.75, y=1.052.

Table 1

Summary of the modes showing the characteristic wavelength, nature of the Floquet multiplier (x), the periodicity of the two-dimensional base flow and
the spatial symmetries of these modes with respect to the streamwise velocity, u.

Mode /D Nature of u Base flow Symmetry

A ~4 Real and positive Mode I shedding ux,y,z,t)y=uX,y,z+ni,t+T)

B ~0.8 Real and positive Mode I shedding ux,y,z,t)y=ux,y,z+ni, t+T)

C ~1 Real and negative Mode I shedding ux,y,z,t)=ux,y,z+ni, t+2T)
D ~19 Real and positive Mode I shedding ux,y,z,t)y=uX,y,z+ni,t+T)

E [1.4-12] Real and positive Steady state | ux,y,z,t) =u(x,y,z+na)

E' [2.4—3.6] Real and positive Steady state II ux,y,z,t)=u(x,y,z+na)

F ~04 Complex Steady state I ux,y,z, t)y=ux,y,z+n, t+Tsp)
F ~03 Complex Steady state II ux,y,z,t)y=u(x,y,z+ni, t+Tsp)
G ~18 Real and positive Mode I shedding ux,y,z,t)y=ux,y,z+ni, t+T)

3.10. Mode G instability

Returning to the BvK vortex street, at rotation rates of « ~ 1.85, a long wavelength instability is observed for Re > 280.
This mode has spatio-temporal characteristics similar to the mode A instability. In Fig. 11 are the perturbation vorticity
contours of mode G and mode A at a=1.85, Re=340 showing this comparison. Mode G occurs alongside modes A and C,
with a very low growth rate as seen in Fig 23 of Rao et al. (2013a).

4. Conclusions

Numerical and experimental investigations have been performed to characterise and quantify the wake of a rotating
cylinder for rotation rates « < 7 and Reynolds numbers Re < 400. Using linear stability analysis, the various two- and three-
dimensional transitions that occur within this parameter space have been identified. Two unsteady regimes exist: (a) mode I
shedding for a <2 which is characterised by alternate vortex shedding and (b) mode II shedding occurring over a small
range of « at higher rotation rates and characterised by single sided vortex shedding (Stojkovi¢ et al., 2002, 2003; Mittal and
Kumar, 2003 and others). Two steady states have also been identified: steady state [ and steady state II (Mittal and Kumar,
2003; Pralits et al., 2010; Rao et al., 2013b). Steady state I occurs at lower Reynolds numbers and steady state II occurs at
higher rotation rates beyond the mode Il shedding region. These two steady states can be distinguished by the flow features
such as the location in the stagnation point and the drag coefficient.

For low rotation rates (« < 1), the transitions are similar to the non-rotating case. On increasing the Reynolds number, the
flow first becomes unsteady following which the transition to three-dimensionality occurs via the mode A instability
followed by the transition to mode B at higher Reynolds numbers. However, the onset of these modes is delayed to higher
values of Reynolds numbers as the rotation rate is increased from a=0 to a=1.

At slightly higher rotation rates (1.5 < a < 1.9), the onset of unsteady flow is delayed to higher Reynolds numbers, and
the wake becomes increasingly asymmetric as the rotation rate is increased. Previous studies (Blackburn and Sheard, 2010)
have shown that the asymmetry of the wake can give rise to subharmonic modes. Here, mode C, a subharmonic mode, is
observed for a > 1.5 and Re > 250. Two other modes, mode D and mode G, are observed for « > 1.85. These modes have
similar spatio-temporal characteristics of the mode A instability, but vastly different spanwise wavelengths. Mode D has an
average spanwise wavelength of approximately 2D, while mode G has a much longer average spanwise wavelength of
~ 18D.

For a > 2, vortex shedding is suppressed until higher rotation rates, where mode II shedding is observed. On this steady
state (SSI), two three-dimensional modes are observed: mode E and mode F. Mode E is believed to arise out of a hyperbolic
instability, while the physical mechanism of mode F is attributed to a centrifugal instability of the shear layers. Mode F
introduces a spanwise frequency in the wake and recent experimental analysis (Radi et al., 2013) shows that mode F is a
travelling wave with a frequency that is accurately predicted by the linear stability analysis.
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Previously unpublished results show that mode E is observed at lower rotation rates (a <1.9), when the two-
dimensional base flow is artificially stabilised. Under these conditions, mode E was observed at Re ~ 100 for the non-
rotating cylinder. The spatio-temporal characteristics of mode E bear close resemblance to the three-dimensional mode
observed in the steady wake behind cylinders translating along a wall.

At higher rotation rates beyond the mode II shedding regime, modes E’ and F/, are observed on steady state II base flow.
These modes have spatio-temporal characteristics similar to their counterparts on steady state I base flow.

The characteristics of the modes observed in the parameter space are summarised in Table 1. The average spanwise
wavelength, nature of the Floquet multiplier, the two-dimensional base flow on which these modes occur and the spatio-
temporal symmetry are detailed here.

Some of the three-dimensional modes which are predicted by linear stability analysis have been observed experimen-
tally. The saturated state of the experimentally observed wake was found to be in good agreement with the linear
predictions.
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