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ABSTRACT

The time-dependent heat transfer process in the region of a turbulent
separation bubble at the leading edge of an isothermal square leading
edge plate is modelled numerically. A discrete-vortex model is used to
determine the velocity field and a third-order upwind differencing
technique i8 used to calculate the thermal field. The prediction of
the mean Nusselt numbers 18 compared with experiment. The model
predicts the instantaneous streamlines, isotherms and local Nusselt
numbers at the plate surface. The influence of the large-scale vortex
structures on the local heat transfer is determined.

Introduction

Heat transfer in separated, reattached and redeveloped flow regions is
important in many engineering situations. There has been a large number of
investigations carried out on such flows for a wide variety of bluff bodies.
These include circular cylinders (e.g. Morgan [1]), forward and backward
facing steps (e.g. Gooray et al. [2]), surface roughness elements and abrupt
expansions or contractions in tubes (e.g. Sparrow and O0'Brien [3]). In recent
years, a number of experimental studies have been undertaken to determine the
mean thermal characteristics of such flows around blunt flat plates which are
heated (Ota and Kon [4], Zelenka and Loehrke [5], Cooper et al. [6],
MacCormick et al. [7], Motwani et al. [8])). These measurements show that the
time-mean heat transfer is augmented when the flow is made to separate and
reattach. The heat transfer characteristics along the plate surface vary
significantly; a local minimum in the Nusselt number is found inside the

separation bubble and a local maximum near reattachment.
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Recently, mechanisms Jnvolving large-scale vortex structures have been
proposed to explain the enhanced heat transfer near the point of time-mean
reattachment (e.g. Kiya and Sasakd [9]). A determinatjon of the mechanisms
leading to the variation of the heat transfer in different regions of the flow
requires evaluation of the instantaneous flow. In this paper, an economical
numerical method for investigating the influence on the heat transfer rate of
the turbulent structures formed in separated high Reynolds number flows is
presented. A discrete-vortex model is used to predict the high Reynolds number
flow and a finite-difference scheme is used to solve the energy equation. For
economy of computation, the solution obtained is restricted here to moderate
Peclet numbers. However, as the flow of energy is still dominated by
convection processes, valuable insights into the mechanisms leading to heat

transfer augmentation are found to emerge from this type of approach.

Numerical Model

The flow considered is that past a rigid, two-dimensional, semi-infinite
heated flat plate, which is aligned with a square leading edge normal to the
flow. The flow upstream is taken to be of uniform velocity and temperature.
The fluid is assumed to be inviscid, incompressible and irrotational every-
where except at points where simple inviscid line vortices are located. These
vortices allow representation of the larger scale flow structures. Attention
is focussed on the shear layer sgeparating from the top leading edge corner.
The vorticity generated at the lower leading edge corner is assumed to have

negligible effect on the shear layer at the top of the plate.

Vorticity Equation: Discrete—vortex model

The continuous sheet of vorticity entering the flow from the leading edge
of the plate is approximated by a distribution of line vortices. The motion of
each vortex is determined through the contributions from the irrotational
field, both the steady and fluctuating components, and from the vorticity
field due to other line vortices. In order to satisfy the condition of zero
flow across the solid plate boundary, the following Schwarz-Christoffel con-
formal transformation is used to locate image vortices:

z = (AM(A2 - l)l/2 - arcosh (1)) 2H/x + iH .
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This transformation maps the flow around a semj-infinite plate (z-plane)
into the flow bounded by the real axis (A-plane). The Jmage vortices are
placed at conjugate positions to the vortices in the upper half of the A-plane
to satisfy the boundary condition of zero normal flow. The advection of the
vortices follows closely the scheme used by Kiya et al. [10). The introduction
of vorticity at the leading edge corner and determination of its strength is
based on the scheme used by Nagano et al. [11].

An important innovation in the present scheme is the recognition of the
mechanism leading to the generation of vorticity and of that responsible for
annihilation of vorticity in the flow. That is, in a homogeneous fluid, vort-
icity is generated at a boundary and its rate of generation is proportional to
the tangential surface pressure gradient. The presence of viscosity leads to a
net flux of vorticity into the fluid at the same rate (Morton [12])). In the
present model, the amount of vorticity shed into the flow along the plate is
adjusted to be consistent with the pressure drop along its surface, which in
turn is influenced by previously introduced vorticity. For long plates, the
difference in the normalized pressure coefficient at the center of the leading
edge and that downstream of reattachment is found to be approximately unity,
both experimentally (e.g. Hillier and Cherry [13]) and by the present model.
The scheme used here 1s to reduce the strengths of vortices recirculating
upstream of time-mean reattachment by a fixed fraction each time-step; this
fraction is determined by running the code and iteratively adjusting the
fractional value until the net vorticity generation rate is consistent to

within one percent of the time-mean pressure drop along the plate surface.

Energy Equation : Finite-difference approximation

The energy equation to be solved is given by

aT/3t + (u.grad) T = e} atv (grad T) .

The velocity u is determined at each step by the discrete-~vortex scheme,

using a discrete approximation to the Biot-Savart integral.
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The energy equation is solved using QUICKEST (Leonard [l4]). This explicit
scheme uses third order upstream differencing for the advection terms and
includes an estimation for the truncated time difference terms 3n a similar
manner to Lejth's method {15]. The method approaches third order accuracy in
both time and space as the Peclet number approaches infinity (for a constant
flow velocity).

GRID AND BOUNDARY CONDITIONS

51 x 31 GRIDPOINTS

T==Th
4H TaT, g dT _
0 dx
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FIG. 1

Quadratically compressed mesh used for finite-difference scheme,
with boundary conditions marked

To accommodate the higher temperature gradients near the plate surface, a
quadratic transformation for the vertical coordinate is adopted; a compression
factor of ten 1s used here., The mesh and boundary conditions are shown in
Figure 1. For the present calculations the mesh used is 51 x 31. The time step
for both the discrete-vortex method and the finite-difference scheme is 0.05
(2H/V° ). The Peclet number used is Pe = 40. The numerical code was run on a
Cyber 205 computer. The (vectorized) code takes approximately 350 seconds of
CPU time per 1000 timesteps.
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Predicted and observed (Cooper et al. [6]) time-mean local
Nusselt numbers along the plate surface

Results and Discussion

The time-mean Nusselt numbers at the plate surface are shown in Figure 2.
The MNusselt numbers are normalized to the maximum value occurring near re-
attachment. The Nusselt number is at a local minimum in the separation bubble
and a local maximum near reattachment; the predicted time-mean reattachment
length xg being 9.3H. The local Nusselt number decreases monotonically in the
direction downstream of reattachment. For comparison, the normalized local
Nusselt numbers measured by Cooper et al. {6] are shown. Although the absolute
values of the Nusselt numbers are lower (due to the use of a lower Peclet
number), the normalized Nusselt numbers are found to be in good agreement with

the experimental results.
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A typical time trace of the point of streamline reattachment 3s shown in
Figure 3. It 1s seen that in general the bubble steadily grows in length until
a new reattachment point forms upstream and the bubble is discontinuocusly
shortened. This result is consistent with the experimental findings of Kiya
and Sasaki [9]; these showed the continual formation of new points of zero
velocity upstream of the point of mean reattachment as large-scale structures
were released from the separation bubble.
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Predicted time trace of the reattachment length for the flow model

A time-averaged measure of the intensity of transport of thermal energy in
the vertical direction due to vortices in the flow is the vertical thersal
eddy diffusivity D, which indicates the correlation between vertical velocity
fluctuations and temperature fluctuations. This is plotted in Figure 4. The
position of maximum diffusivity in the chordwise direction along the plate is
found in the neighborhood of the position of maximum Nusselt number downstream
of the leading edge. This result suggests that the augmentation of heat trans-
fer results from vortex action in moving warm fluid away from the surface and

cool fluid towards the hested plate.
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Predicted contours of the vertical thermal eddy diffusivity Dy
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Predicted snapshots of (a) instantaneous vortex positions and isotherms and
(b) instantaneous local Nusselt number profile



672 M.C. Thompson, K. Hourigan and M.C. Welsh Vol. 13, No.

More jmportantly, from the point of view of understanding the mechanisms
leading to the augmented heat transfer when the flow is made to separate and
reattach, are the predictions of time-dependent quantities. Characteristic
instantaneous isotherms together with the vortex positions and Nusselt numbers
are shown in Figure 5. The influence of the large-scale vortex structures on
the local heat transfer rate is apparent. A local peak in the Nugselt number
is found from this snapshot, and others not shown, to be associated with each
large-scale structure. This is interpreted as the action of these structures
in drawing cooler fluid towards the surface immediately downstream of the
vortex positions. The fluid being drawn close to the instantaneous point of
reattachment is relatively cool, having flowed over the separation bubble away
from the heated surface. The relatively large temperature difference between
the plate and this cooler fluid accounts for the higher heat transfer rates
observed at the reattachment point. Inside the separation bubble, the recircu-
lating flow is generally less turbulent and of lower velocity; this leads to a
generally higher thermal resistance, as reflected by the lower values of both

the time-mean and instantaneous Nusselt numbers in this region.

It is, perhaps, significant that the relative heat transfer character-
istics along the plate surface are predicted quite well by an essentially
invigscid, two-dimensional model. However, this agreement is not surprising :
the findings of Rothe and Johnston [16] indicate that the spanwise vortices
are primarily responsible for the region of unsteady reversing flow in the
neighborhood of the mean reattachment point; the dominant vehicles of energy
transport, the large-scale structures, are little influenced by viscosity,

which may therefore be neglected.

Lonclusions

A time—-dependent model of the heat transfer process near a turbulent
separation bubble has been presented. The velocity field is deduced from the
vorticity field that is provided by a discrete-vortex model of the flow. The
thermal field is calculated simultaneously using a third-order finite-
difference approximation to solve the energy equation on a quadratically

compressed grid.

The peak time-mean Nusselt number downstream of the leading edge is found

to be located in the region of the peak vertical thermal eddy diffusivity and
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the time-mean point of reattachment of the separating streamline. The profile
of the local time~mean Nusselt number compares well with those obtained exper-
imentally at higher Peclet numbers. Vortex action in drawing cooler fluid
towards the plate surface leads to instantaneous local peaks in the Nusselt
number along the plate surface; a prominent peak is located at the point of

reattachment.
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Nomenclature
Cp heat capacity of fluid at constant pressure
D, vertical thermal eddy diffusivity [-~v'1'/(8T/dy))

semi-thickness of plate

k thermal conductivity of fluid
Nu Nusselt number [-a(T/AT)/a(y/ZH)]y_O
W time-mean Nusselt number

maximum value of Nu occurring near reattachment

max
Pe Peclet number Cpp V“ZH/k
time
temperature of fluid
° temperature of unheated fluid
T, temperature at plate surface
v fluctuation of vertical velocity
u fluid velocity normalized to V
V“ magnitude of velocity of flow at upstream infinity
x horizontal coordinate direction
xR reattachment length
y vertical coordinate direction
z=x+y complex coordinate in physical plane
A complex coordinate in transformed plane
AT temperature difference between plate and incident fluid

complex flow velocity potential
fluid density

T dimensionless time tV_/2H
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