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The flow-induced vibration of a tethered sphere was investigated through numerical
simulations. A determination of the different modes of sphere vibration was made
with simulations conducted at fixed Reynolds numbers (500, 1200 and 2000) with a
sphere of mass ratio 0.8 over the reduced velocity range U∗ ∈ [3, 32]. The flow was
governed by the incompressible Navier–Stokes equations, while the dynamic motion
of the sphere was governed by coupled Newtonian mechanics. A new fluid–structure
interaction (FSI) solver was implemented to efficiently solve the coupled FSI system.
The effect of Reynolds number was found to be significant in the mode I and
II regimes. A progressive increase in the response amplitude was observed as the
Reynolds number was increased, especially in the mode II regime. The overall
sphere response at the highest Reynolds number was relatively close to the observed
behaviour of previous higher-Re experimental studies. An aperiodic mode IV response
was observed at higher reduced velocities beyond the mode II range in each case,
without the intervening mode III regime. However, as the mass ratio increased
from 0.8 to 80, the random response of the sphere (mode IV) gradually became
more regular, showing a mode III response (characterized by a near-periodic sphere
oscillation) at U∗ = 30. Thus, if the inertia of the system is low, mode IV appears at
lower U∗ values, while for high-inertia systems, mode IV appears at high U∗ values
beyond a mode III response.

Key words: flow–structure interactions

1. Introduction
A large number of research studies have been devoted to enhance the understanding

of flow-induced vibration (FIV) of structures due to its practical importance to
engineering. FIV is a vibration phenomenon of solid structures induced by the
flow of the surrounding fluid. When a fluid flows past a bluff solid structure, a
large-amplitude fluctuation pressure force develops near the rear of the structure,
which leads to the formation of a wake with alternately shedding vortices. Moreover,
when the vortex formation frequency is matched by the system’s natural frequency,
the response is termed vortex-induced vibration (VIV). This is a highly periodic
vibration state that can be sustained over a lengthy period. Fatigue damage or failure

† Email address for correspondence: methma.rajamuni@monash.edu
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of a structure can be caused by FIV and, therefore, it is a crucial consideration for
the design of many engineering systems. Some examples are bridges, chimney stacks,
aircraft, ground vehicles, submarines, tethered structures and offshore structures.
Hence, it is important to improve our understanding of FIV and the methods of
controlling it.

The field of FIV has been continuously developing over the last few decades
through experimental and computational studies. Its fundamentals have been revealed
substantially through the study of basic geometries. Indeed, many books have been
devoted to the field; the reader is referred to the textbook of Blevins (1977) for
a detailed introduction. The comprehensive reviews of Bearman (1984), Parkinson
(1989), Sarpkaya (2004), Williamson & Govardhan (2004, 2008) and Wu, Ge & Hong
(2012) provide further insight. Most of the studies have been based on cylindrical
structures, albeit there are ample applications with spherical geometries. For example,
tethered bodies such as buoys, underwater mines, tethered balloons and towed objects
behind vessels are often spherical.

The majority of early studies of tethered spheres have concerned the effect of
surface waves on tethered buoyant spheres. For example, the investigations of
Harleman & Shapiro (1960) and Shi-Igai & Kono (1969) employed ‘Morison’s
equation’ and empirically obtained drag and inertial coefficients to predict the FIV
of the sphere as a forced vibration problem. The coupling of wave motion and the
sphere dynamics yielded a complicated equation for which the underlying controlling
physics is difficult to understand. Gottlieb (1997) investigated the response of a
nonlinear small-body ocean-mooring system excited by finite-amplitude waves and
restrained by a massless elastic tether. He determined the stability of periodic motion
numerically using Floquet analysis and found that the bifurcation structure includes
ultra-subharmonic and quasi-periodic responses. The hydrodynamic dissipation
mechanism was found to control stability thresholds, whereas the convective
nonlinearity governed the evolution to a chaotic system response.

Vortex-induced vibration of a tethered sphere in a uniform flow was first studied by
Williamson & Govardhan (1997) and Govardhan & Williamson (1997) experimentally.
They discovered that a tethered sphere vibrates vigorously at a saturation amplitude
of close to two diameters peak-to-peak. Moreover, the sphere oscillation increased the
drag force and the tether angle by the order of 100 % over that predicted using the
drag measurement of a stationary sphere. The transverse oscillation frequency was half
that of the streamwise oscillation frequency, despite the fact that the natural frequency
of a tethered body is independent of the direction. They observed an excellent collapse
of data over a range of different mass ratios (the density ratio between the sphere
and fluid, m∗) and tether length ratios (the ratio between tether length and the sphere
diameter, l∗) when plotting the sphere response amplitude versus reduced velocity,
U∗=U/( fnD), rather than versus Reynolds number, where U is the upstream velocity,
fn is the natural frequency of the system and D is the diameter of the sphere.

Govardhan & Williamson (1997) observed a local peak in the amplitude response
curve when the root-mean-square (r.m.s.) value of the amplitude was used instead of
the maximum amplitude. This peak appeared around U∗ ∼ 6. It was further found
that the vortex shedding frequency, fs, matched the system’s natural frequency, fn,
and the vortex shedding frequency of the static sphere, fvo. Indeed, this is a VIV
response caused by resonance and is known as mode I vibration. After mode I,
as the reduced velocity is increased, Jauvtis, Govardhan & Williamson (2001) and
Govardhan & Williamson (2005) observed another periodic VIV response known as
mode II vibration. The amplitude of the mode II was approximately twice that of
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mode I. The transition between these two modes was quite distinct for very light
tethered bodies (m∗ < 1). However, for elastically mounted higher-mass-ratio spheres,
the transition between modes I and II was more continuous in the amplitude response
curve. By analysing force measurements, Govardhan & Williamson (2005) showed
that the phase of the vortex force relative to the sphere motion was approximately
90◦ higher for mode II compared to mode I. They observed a chain of two-sided
hairpin vortex loops in the wake for both modes I and II with aid of digital particle
image velocimetry (DPIV).

Hout, Krakovich & Gottlieb (2010) identified three bifurcation regions for VIV of
a heavy (m∗= 7.87) tethered sphere in the reduced velocity range, 2.86U∗6 31. The
sphere remained stationary in the first regime while it showed large-amplitude periodic
oscillations in the second regime. Consistent with the observation of Govardhan &
Williamson (2005), they also found that the phase at which vortices were shed
increased with increasing U∗ in the second bifurcation region. In the third bifurcation
regime, the sphere showed less-periodic and smaller-amplitude vibration.

For VIV of a cylinder, it has been discovered that a critical mass ratio, m∗crit, exists,
below which a large-amplitude response will persist up to infinite reduced velocity.
Using the effective added mass, Govardhan & Williamson (2005) estimated that m∗crit
is approximately 0.6 for a sphere. Eshbal, Krakovich & Hout (2012) investigated the
VIV of a light tethered sphere with m∗<m∗crit, for the Reynolds-number range 4306
Re61925. As U∗ increased, they observed a continuously increasing trend in the r.m.s.
amplitudes after the first bifurcation, as expected.

Coulombe-Pontbriand & Nahon (2009) investigated the dynamics of spherical
aerostat on a single tether in the supercritical Reynolds-number range (Re> 3.7× 105).
Their experiments demonstrated that a tethered sphere in a turbulent flow will strongly
oscillate. The amplitude of the transverse oscillation was found to increase with the
increasing U∗ ∈ [5–40] but was independent of the tether length. Moreover, they found
that there was a substantial increment in the drag coefficient of the balloon due to its
large oscillations, surface roughness and wind turbulence, consistent with the result
of Govardhan & Williamson (1997).

Jauvtis et al. (2001) experimentally found another periodic large-amplitude vibration
state beyond the mode II regime, with heavy spheres of mass ratios m∗ = 28, 80 and
940. It appeared in the reduced velocity range U∗ ∼ 20–40 and was named mode III.
It was difficult to explain the cause of mode III using classic lock-in theories, since
the principal vortex shedding frequency was found to be 3–8 times higher than the
sphere vibration frequency. Later, Govardhan & Williamson (2005) classified mode III
as a movement-induced excitation. However, the nature of the mode III vibration state
has not been examined in detail and further investigations seem warranted to enhance
the understanding of this mode. Subsequently, Jauvtis et al. (2001) found another
vibration state after mode III for U∗ > 100 with a sphere of m∗ = 80, which is
known as mode IV. In this mode, the sphere showed intermittent bursts of vibrations,
in contrast to (near-)periodic vibrations for the first three modes. Despite being
an aperiodic vibration, interestingly, the main frequency component was close to
the natural frequency of the system. Moreover, it was observed that the response
amplitude increased with increasing reduced velocity.

Behara, Borazjani & Sotiropoulos (2011) investigated VIV with an elastically
mounted sphere computationally, allowing three degrees of freedom of motion, at
Reynolds number of Re = 300 and reduced mass of mr = 2. Over the reduced
velocity range, 4 6 U∗ 6 9, they observed two distinct sphere vibration modes at the
same reduced velocities, namely hairpin and spiral modes. More recently, Behara &
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Sotiropoulos (2016) extended this study by expanding the U∗ range and increasing
the Reynolds number up to 1000 at U∗ = 9. They identified that the hairpin mode is
unstable and merges with the spiral mode at U∗ = 9. Moreover, the detailed sphere
response was found to be strongly dependent on the Reynolds number.

The combined experimental and numerical studies of Lee, Hourigan & Thompson
(2013) on the VIV of a neutrally buoyant (m∗ = 1) tethered sphere covered the
Reynolds-number range 50 6 Re 6 12 000. They identified seven different broad but
relatively distinct oscillation and wake states. The more recent study of Rajamuni,
Thompson & Hourigan (2018a) investigated transverse FIV of an elastically mounted
sphere at Re = 300 and 800 over a wide range of reduced velocity, 3.5 6 U∗ 6 100.
They observed a large-amplitude VIV response at lower reduced velocities (U∗ < 13)
for both Reynolds numbers and named it branch A. This branch was found to widen
and the response amplitude increase as the Reynolds number was increased from 300
to 800. The FIV response was strongly dependent on Reynolds number for higher
reduced velocities (U∗ > 13); at Re = 300, the sphere showed two small-amplitude
vibration regions, whilst at Re= 800, it showed intermittent bursts (mode IV).

Rajamuni, Thompson & Hourigan (2016, 2018b) and Sareen et al. (2018a)
studied the effect of transverse rotation on the VIV of a sphere computationally
and experimentally, respectively. They found that the response amplitude decreased
and the synchronization regime narrowed as the rotation rate increased.

Even though some experimental and computational studies have examined FIV of a
sphere previously, further exploration is warranted; in particular, the appearance and
characterization of the modes III and IV vibration states. Therefore, this computational
study focuses on the nature of FIV of a tethered sphere at low to intermediate
Reynolds numbers, with special attention paid to the mode III and IV regimes. The
structure of the paper is as follows. The next section (§ 2) describes the numerical
methods used and then the calculation of the natural frequency; the following section
(§ 3) presents validation studies; the next section (§ 4) presents the results of the FIV
response of a sphere, with modes I, II, III and IV being discussed in the subsequent
subsections; finally, concluding remarks are provided (§ 5).

2. Numerical methodology

The computational study was undertaken using the open-source computational fluid
dynamics (CFD) package OpenFOAM (https://openfoam.org) developed based on
a finite-volume method. This package is capable of handling a variety of fluid
flow problems. It also enables the solution of fluid–structure interaction (FSI)
problems using dynamic mesh techniques. However, dynamic mesh techniques are
computationally costly since the mesh is required to be reconstructed according to
the solid motion at the end of each time step. A single-body FSI problem, such as
the present case, can be solved efficiently without using a dynamic mesh technique.
Instead of deforming the mesh, the coupled solid motion and Navier–Stokes equations
can be solved in a body-fixed reference frame with a non-deformable mesh as used by
Blackburn & Henderson (1996), Leontini, Thompson & Hourigan (2006), Lee et al.
(2013), Rajamuni et al. (2018a) and Rajamuni, Thompson & Hourigan (2019). This
technique is considerably more efficient than a dynamic mesh technique. Therefore, a
new solver was developed to solve the coupled FSI system for a tethered sphere. The
FSI system and FSI solver are discussed in detail in the following two subsections.
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FIGURE 1. Schematic of the tethered sphere. Two coordinate systems were used to model
the system: Cartesian coordinates 〈i, j, k〉, and spherical coordinates 〈er, eθ , eφ〉. Panel (a)
shows an isometric view while (b) and (c) show the views in the x–y and z–x planes,
respectively.

2.1. Problem formulation
The set-up used for this computational study is simply a tethered sphere in a
uniform flow field. The tether was assumed to be massless. This is compatible
with experimental studies that chose a tether whose mass was negligible compared
to the mass of the sphere (Williamson & Govardhan 1997; Govardhan & Williamson
1997, 2005). Moreover, the tether was assumed to be rigid and inextensible, i.e. there
is no radial movement along the tether axis. This assumption is found to be justified,
as experimentally there appeared to be very little movement in the radial direction.
This assumption restricts the motion of the sphere to a spherical surface whose
radius is the tether length. Moreover, with this holonomic constraint, the number of
equations required to describe the sphere dynamics reduces to two, even though the
sphere has three degrees of freedom. Moreover, the tethered sphere undergoes pure
rotation around the base point of the tether. Therefore, a three-dimensional (3-D)
rotation group SO(3) can also be used to obtain the equations of motion of the
sphere. However, for simplicity, Newtonian mechanics principles were used here as
described below.

Figure 1 shows a schematic of the system. To derive the equations of motion of
the sphere, a spherical coordinate system was employed with unit vectors er, eθ and
eφ as shown in the figure. However, the Navier–Stokes equations were derived with a
Cartesian coordinate system with unit vectors i, j and k in the x, y and z directions,
respectively. The mapping between these two coordinate systems is bijective and can
be elaborated with parameters θ ∈ [0, 2π) and φ ∈ [0,π] as

M:

er
eθ
eφ

=
cos θ sin φ sin θ sin φ cos φ
− sin θ cos θ 0

cos θ cos φ sin θ cos φ − sin φ

 i
j
k

 , (2.1)
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M−1
:

 i
j
k

=
cos θ sin φ − sin θ cos θ cos φ

sin θ sin φ cos θ sin θ cos φ
cos φ 0 − sin φ

er
eθ
eφ

 . (2.2)

Here θ is the angle of the tether to the xz plane and φ is the angle of the tether to the
z direction. In spherical coordinates, the position of the sphere, rs, can be expressed
as rs = L er, where L is the length from the bottom of the tether to the centre of the
sphere. Then, the velocity, vs, and the acceleration, as, of the sphere can be obtained
by differentiating the position and the velocity of the sphere with respect to time as
given in equations (2.3) and (2.4), respectively:

vs = L(θ̇ sin φ eθ + φ̇ eφ), (2.3)

as = L(−(θ̇ 2 sin2 φ + φ̇2)er + (θ̈ sin φ + 2θ̇ φ̇ cos φ)eθ + (−θ̇ 2 sin φ cos φ + φ̈)eφ). (2.4)

Forces acting on the sphere are of three types: a structural force T (the tension in
the tether); a buoyancy force, b; and the fluid forces fd, fy and fz, which denote the
components in the streamwise (x), lateral (y) and transverse (z) directions, respectively
(see figure 1). In spherical coordinates, the summation of all forces can be written as∑

F = ( fd cos θ sin φ + ( fy + b) sin θ sin φ + fz cos φ − T)er

− ( fd sin θ − ( fy + b) cos θ)eθ
+ ( fd cos θ cos φ + ( fy + b) sin θ cos φ − fz sin φ)eφ. (2.5)

Once the sphere acceleration and forces acting on it are known, the equations of
motion can be easily obtained by the angular momentum balance, that is, Iω̇=

∑
r×F,

where I=m(D2/10+L2) is the inertia of the sphere at the base of the tether, ω̇= a/L
is the angular acceleration of the sphere, and m and D are the mass and diameter of
the sphere, respectively. The component equations are

m(D2/10+ L2)(θ̈ sin φ + 2θ̇ φ̇ cos φ)=−L( fd sin θ − ( fy + b) cos θ), (2.6)

m(D2/10+ L2)(φ̈ − θ̇ 2 sin φ cos φ)
= L( fd cos θ cos φ + ( fy + b) sin θ cos φ − fz sin φ). (2.7)

The above two dynamics equations can be converted into matrix form by rearranging
the terms asθ̈φ̈

0

 = L
m
(

1
10 D2
+ L2

)
− sin θ/sin φ cos θ/sin φ 0

cos θ cos φ sin θ cos φ − sin φ
0 0 0

 fd
fy + b

fz


+

 −2θ̇ φ̇ cot φ
θ̇ 2 sin φ cos φ

0

 . (2.8)

At this point, it is important to note that there is a singularity associated with φ = 0.
However, it is not a problem for the current simulations, since φ can never be zero
because the buoyancy force is much higher than the fluid forces and, therefore, the
tether can never be aligned to the transverse direction (z direction).

The Newtonian fluid is assumed incompressible and viscous, and modelled in
a Cartesian coordinate system whose origin is the centre of the sphere. This is a
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Vortex-induced vibration of a tethered sphere 885 A10-7

non-inertial reference frame, since the sphere is allowed to move according to the
forces applied on it. Therefore, the acceleration of the frame should be included in
the momentum equation. The acceleration of the frame is obviously the acceleration
of the sphere, as, given in equation (2.4). However, since this equation is in spherical
coordinates, it is necessary to first convert it into Cartesian coordinates, which can be
easily done by the mapping, M, given in equation (2.1). Letting ac be the acceleration
of the frame once it is converted into Cartesian coordinates, then

ac =M(as). (2.9)

Finally, the coupled fluid–solid system can be described by the Navier–Stokes
equations given in (2.10) and (2.11) and the sphere motion equations given in
(2.8) together with equations (2.1), (2.4) and (2.9):

∂u
∂t
=−(u · ∇)u−

1
ρ
∇p+∇ · ν∇u− ac, (2.10)

∇ · u= 0, (2.11)

where u= u(x, y, z, t) is the velocity vector field, p is the scalar pressure field, ρ is
the fluid density and ν is the kinematic viscosity of the fluid.

2.2. FSI solver for a tethered sphere
A new fully coupled solver (named ‘tetheredVivIcoFoam’) was developed, based on
the in-built ‘icoFoam’ solver for laminar flows, to solve the coupled fluid–solid system
defined by equations (2.8)–(2.11) for a tethered sphere.

The icoFoam solver was developed based on the pressure-implicit with splitting
of operators (PISO) algorithm introduced by Issa (1986). At a given time step, this
algorithm initiates by setting up the boundary conditions. In the predictor iteration, the
discretized momentum equations are solved for an intermediate velocity field, based
on the pressure field and the flux calculated in the previous time step. Then, in a
corrector iteration, first, the mass fluxes of the cell faces are computed, and then the
pressure equation (which satisfies the continuity equation) is solved for the pressure.
Next, the mass fluxes on the cell faces and the velocities are corrected based on the
new pressure field. Finally, the boundary conditions are updated. Issa (1986) showed
that two corrector iterations are sufficient to achieve second-order accuracy, as the
whole PISO algorithm is second-order-accurate.

Similar to the solver we previously developed for the FIV of an elastically mounted
solid body (Rajamuni et al. 2018a, § 2.2), the tetheredVivIcoFoam solver employs a
predictor–corrector iterative method. The solid motion was first predicted explicitly in
the predictor iteration and then corrected as necessary with several corrector iterations.
Once the solid motion is obtained (from the predictor or a corrector iteration), the
Navier–Stokes equations were solved using the PISO algorithm by treating the
acceleration of the frame as a source term. This iterative process for the (n + 1)th
time step can be elaborated as follows:

The predictor iteration. Initially, the angular accelerations of the sphere, (θ̈ φ̈)T, are
predicted explicitly using a third-order polynomial interpolation by(

θ̈

φ̈

)(n+1)

= 3
(
θ̈

φ̈

)(n)
− 3

(
θ̈

φ̈

)(n−1)

+

(
θ̈

φ̈

)(n−2)

. (2.12)
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885 A10-8 M. M. Rajamuni, M. C. Thompson and K. Hourigan

Then, the angular velocities, (θ̇ φ̇)T, and tether angles, (θ φ)T, are estimated using
a third-order Adams–Moulton method by integrating the angular accelerations and
angular velocities to obtain(

θ̇

φ̇

)(n+1)

=

(
θ̇

φ̇

)(n)
+
δt
12

(
5
(
θ̈

φ̈

)(n+1)

+ 8
(
θ̈

φ̈

)(n)
−

(
θ̈

φ̈

)(n−1))
(2.13)

and (
θ

φ

)(n+1)

=

(
θ

φ

)(n)
+
δt
12

(
5
(
θ̇

φ̇

)(n+1)

+ 8
(
θ̇

φ̇

)(n)
−

(
θ̇

φ̇

)(n−1))
, (2.14)

respectively. Then, the acceleration of the sphere, a(n+1)
s , is obtained by equation (2.4)

and converted into Cartesian coordinates, a(n+1)
c , using the mapping given in equation

(2.1). At the end of the predictor step, the Navier–Stokes equations given in (2.10)
and (2.11) are solved with the predicted a(n+1)

c and the forces exerted on the sphere,
( fd fy fz)

(n+1), are calculated.

A corrector iteration. Initially, the angular accelerations of the sphere, (θ̈ φ̈)T, are
corrected by equation (2.8) with the values obtained for θ , φ, θ̇ , φ̇, fd, fy and fz at
the predictor iteration (or at the last corrector iteration). Then, the corrected angular
accelerations are relaxed to improve the convergence characteristics by(

θ̈

φ̈

)(n+1)′

=

(
θ̈

φ̈

)(n+1)∗

+ γ

((
θ̈

φ̈

)(n+1)∗∗

−

(
θ̈

φ̈

)(n+1)∗)
, (2.15)

where γ is the relaxation parameter, and ∗ and ∗∗ represent the angular accelerations
calculated in the previous and the current iterations, respectively. The method becomes
unstable, especially for small-mass-ratio spheres in the absence of any relaxation. The
convergence of the method can be improved by the choice of γ , depending on the
parameter combination. In the literature, Le Tallec & Mouro (2001), Causin, Gerbeau
& Nobile (2005) and Borazjani, Ge & Sotiropoulos (2008) have also used under-
relaxation schemes to improve the stability of their FSI algorithms. Once the angular
accelerations are corrected and relaxed, the angular velocities and tether angles are
calculated, similar to the predictor step. With these newly calculated values, the sphere
acceleration (in Cartesian coordinates) is calculated and the Navier–Stokes equations
are solved. Finally, the fluid forces exerted on the sphere are calculated to use in the
next corrector iteration. This iterative process is terminated once the magnitude of the
fluid forces and sphere angular accelerations are converged within the given tolerance
limit, ε= 0.001. This value was chosen for simulations since it was found that further
decreasing ε does not increase the accuracy of the solution.

The temporal accuracy of the overall FSI solver is second-order, although the
solution process for the solid motion is third-order-accurate. This is because the PISO
algorithm itself is of second-order accuracy. As described in the previous section,
the fluid flow is modelled in the moving frame that is attached to the centre of the
sphere. This motion is acknowledged through the outer domain velocity boundary
conditions (except the outlet boundary). In this study, all the outer boundaries, except
the outlet, where a pressure condition is enforced, have velocity prescribed on them.
Once the predictor–corrector iterative process is completed, the velocity boundary
conditions are updated according to the sphere velocity, vc =M(vs).
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Vortex-induced vibration of a tethered sphere 885 A10-9

OpenFOAM is a cell-centred finite-volume code that offers a number of different
choices for the temporal and spatial discretization of the different terms in the
Navier–Stokes equations. The choices made for the current simulations were as
follows. The second-order backward scheme was used to integrate forwards in time.
This uses a stencil based on the solution at three time levels to achieve the desired
second-order accuracy (see Jasak 1995). Both the pressure and diffusion terms were
discretized using second-order centred approximations. The convection terms were
treated using the GammaV scheme with β = 0.5. This scheme is based on the
normalized variable diagram (NVD) approach originally introduced by (Leonard
1991), which is very similar to the total variation diminishing approach. The
GammaV variation (Jasak, Weller & Gosman 1999) employs the central-difference
approximation limited by the upwind approximation to prevent unphysical overshoots
of the evolving solution near sharp changes in the solution, otherwise characteristic
of the pure central-difference scheme. Tests show that, on a standard convection
problem of advection of a step change (e.g. see figure 15 of Jasak et al. (1999)),
the step variation is resolved almost as well as the second-order central-difference
discretization, but avoiding the artificial diffusion of the upwind scheme. Naturally, it
provides a pure second-order solution as the grid is refined, and indeed convergence
(grid independence) was verified for this study through standard resolution studies
described below. However, given that the advection schemes such as the GammaV
scheme are not normally used for incompressible flow problems, further substantiation
that the predictions do not depend on this choice of discretization approach is
provided in the appendix. In particular, it is shown that the choice of the standard
purely second-order central-difference scheme for the advection terms gives essentially
the same predictions of the amplitude response curve (and shedding modes) at the
highest Reynolds number studied (Re = 2000). In addition, an independent check
using a spectral/spectral-element code also predicts the same response curve as the
GammaV scheme for the intermediate-Reynolds-number case (Re = 1200). These
additional studies provide further support that the predictions presented in this paper
and implementation of the model in the code are reliable.

For the flow solver to be stable, the time step should be chosen such that it satisfies
the Courant condition, u1t/1x < 1, everywhere. The time step used for all of the
simulations presented in this paper was 0.005U/D. This is found to be sufficient to
ensure the Courant number is less than unity over the entire domain.

2.3. Dynamic mode decomposition
Dynamic mode decomposition (DMD) is also used as part of the analysis to
characterize the wake behind the sphere. DMD is a numerical procedure introduced
by Schmid & Sesterhenn (2008) for extracting the dynamic periodic features of a
flow. This method involves spectral analysis of the Koopman operator. For a given
sequence of time-resolved flow field measurements, in this the case consisting of a set
of velocity fields at fixed time increments, DMD computes a set of approximations
to the Koopman modes, also called Ritz vectors, with associated eigenvalues, called
Ritz values. Ritz vectors are the eigenfunctions of the Koopman operator, each of
which is associated with a fixed oscillation frequency specified by the argument of
the associated eigenvalue. A Koopman mode may grow or decay exponentially in
time, according to the magnitude of the corresponding eigenvalue. In particular, this
analysis is useful to extract the dominant frequencies belonging to the sequence of
fields and the corresponding periodic spatially varying modes, which may be localized
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885 A10-10 M. M. Rajamuni, M. C. Thompson and K. Hourigan

in different regions of space. The approach used here closely follows that of Rowley
et al. (2009) and Schmid (2010, 2011), so only a very brief outline is given here.

Let x1, x2, . . . , xm represent a set of column vectors of the field data (e.g. velocity
field), collected at equal time intervals δt. Following the Krylov technique, in
particular, the Arnoldi approach, xm can be expressed as a linearly independent
combination of x1, x2, . . . , xm−1, leading to the following matrix equation:

(
x2 | x3 | . . . | xm

)
=
(
x1 | x2 | . . . | xm−1

)


0 0 . . . 0 c1
1 0 . . . 0 c2
0 1 . . . 0 c3
...

...
. . .

...
...

0 0 . . . 1 cm−1

≡KC.

(2.16)
The matrix C is called the companion matrix, which is the equivalent low-dimensional
representation of the field data. Since the vectors x0, . . . , xm are known, the coeffi-
cients, c1, . . . , cm−1 can be easily obtained by the QR factorization or singular value
decomposition. Let zi and λi be the ith eigenvector and eigenvalue of C, respectively.
Then, the Koopman modes (Ritz vectors) of the dataset can be obtained by

vi =Kzi, (2.17)

and the Ritz values are directly the eigenvalues of the companion matrix. Note that
both the Ritz vectors and values consist of complex conjugate pairs.

The field at any discrete time tk can be reconstructed using the Ritz vectors and
values. However, the Ritz vectors should be obtained from the properly rescaled
eigenvalues for the reconstructions. Let ẑi = βizi be the scaled version of zi using the
ith element of the vector, β = Z−1e1, where Z = [z1 z2 . . . zm−1] and e1= (1 0 . . . 0)T.
If v̂i = K ẑi is the scaled Ritz vector, then the field at any discrete time tk can be
reconstructed by

xk =

m−1∑
i=1

λk
i v̂i. (2.18)

If the sequence of fields is strictly periodic, so that xm= x1, then the above expansion
is equivalent to a Fourier decomposition.

2.4. The natural frequency
The reduced velocity, U∗ = U/( fnD), is identified as a suitable parameter for FIV
problems as it is a function of the system’s natural frequency. In experiments, a range
of reduced velocity is obtained by increasing the flow velocity, U. Since the Reynolds
number is also a function of the flow velocity, it is impracticable to increase the
reduced velocity by fixing the Reynolds number. This is an undesirable side-effect
that appears in experiments. However, when performing simulations, it is desirable
to fixed the Reynolds number at a suitable value. This limits the number of varying
parameters for each set of simulations. Moreover, if the Reynolds number is increased,
then the laminar flow transitions to turbulence by introducing small scales of motion.
To accurately predict these small scales, a finer mesh density is required. However,
this increases the computational cost considerably.
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Vortex-induced vibration of a tethered sphere 885 A10-11

Williamson & Govardhan (1997) obtained an expression for the non-dimensional
natural frequency of the tethered sphere system as

Sn ≈

(
1

2π

)
1

Fr
√

l∗

√
1−m∗

Ca +m∗
, (2.19)

where Ca is the added-mass coefficient (0.5 for a sphere). The mass ratio, m∗, and
the tether length ratio, l∗ = L/D, are desired to be kept constant for a particular
set of simulations. Therefore, it is possible to obtain a range of natural frequencies
(reciprocal of the reduced velocity) by varying the Froude number, Fr, numerically.
The Froude number is a non-dimensional number defined as the ratio of the flow
inertia to the gravitational force (Fr = U/

√
gD, where g is the gravitational force).

Furthermore, it is conceivably possible to investigate numerically as U∗→∞, whereas
the reduced velocity range is limited experimentally to the flow velocity accessible
in the flow facility. For the present study, three sets of simulations were performed
by fixing the Reynolds number at Re= 500, 1200 and 2000. Studying the cases for
the Reynolds numbers Re = 1200 and 2000, which are closer to the experimental
studies of Williamson & Govardhan (1997), Govardhan & Williamson (1997, 2005)
and Jauvtis et al. (2001), provides additional insight into those studies, while the case
of Re= 500 will provide an understanding of the problem in the laminar regime.

2.5. Calculation of the reduced velocity
To obtain a range of reduced velocities, it is required to calculate the natural frequency
of the tethered system accurately, which is the focus of this section.

Let (X, Y, Z)T be the position of the sphere in Cartesian coordinates. Then, the
equation of motion of the tethered sphere can be obtained by the linear momentum
balance (see figure 1) as

m

Ẍ
Ÿ
Z̈

=
 fd

fy + b
fz

− T

sin φ cos θ
sin φ sin θ

cos φ

 . (2.20)

However, (sin φ cos θ, sin φ sin θ, cos φ)T is the unit vector along the tether, er, and
can be expressed as (X, Y, Z)T/L. Hence, the equations of motion can be rearranged
into

m

Ẍ
Ÿ
Z̈

− T
L

X
Y
Z

=
 fd

fy + b
fz

 . (2.21)

From these equations, it is clear that the natural frequency of the system is identical
in all three directions and is given by

fn =
1

2π

√
T

mL
. (2.22)

This can be written in the non-dimensional form as

Sn =
fnD
U
=

1
2π

√
D2T

U2mL
. (2.23)
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Since the sphere is assumed to have no motion in the direction of the tether, the
tension of the tether can be obtained simply from the force balance as

T =
√

f 2
d + ( fy + b)2 + f 2

z , (2.24)

assuming the centrifugal force is negligible, consistent with a large tether length ratio.
With this expression for T , equation (2.23) can be written in the non-dimensional form
as

Sn =
1

2π

√√√√√C2
d + {Cy + (1−m∗)α}2 +C2

z

(4/3)(m∗ +Ca)l∗
, (2.25)

where α = 4/(3Fr2). For a stationary sphere, the time-averaged lateral (y) and
transverse (z) forces are negligible compared to the drag force. Moreover, (1−m∗)α
is much greater than Cy over the entire reduced velocity range investigated for the
mass ratios of interest in this study (m∗= 0.8 and 80). Hence, (2.25) can be simplified
to

Sn ≈
1

2π

√√
C2

d + {(1−m∗)α}2

(4/3)(m∗ +Ca)l∗
. (2.26)

The reduced velocity, U∗, is defined as the inverse of the natural frequency, Sn,
leading to

U∗ = 2π

√
(4/3)(m∗ +Ca)l∗√
C2

d + {(1−m∗)α}2
. (2.27)

For all of the numerical results to be presented, equation (2.27) has been used to
calculate the reduced velocity. A range of U∗ is obtained by varying α. In experiments,
since the gravitational acceleration is constant, Cd is negligible compared to the
buoyancy force component, and therefore Sn given in (2.19) is valid. In contrast, in
this numerical study, the buoyancy term is of the same order of magnitude as the
drag coefficient for higher reduced velocities. Therefore, it is required to use equation
(2.27) instead of equation (2.19).

3. Numerical sensitivity and validation studies
3.1. Grid and domain details

A cubical domain with a side length of 100D was chosen for the fluid with the sphere
at its centre. Figure 2 shows the hexahedral grid generated using Ansys-ICEM-CFD
for the fluid domain. A cubic block with a side length of 5D was placed around the
sphere to achieve greater resolution near the sphere (see figure 2b). This cube was first
decomposed into six square frustums. The grid was concentrated towards the sphere
surface by assigning exponentially distributed grid points in the radial direction of
each square frustum (see figure 2c,d). Uniformly distributed grid points were assigned
in the other two directions of each square frustum. A large number of grid points were
assigned in the downstream direction to reasonably resolve the wake structures.

Five successively finer grids were constructed to analyse the dependence of the
computed solution on the grid refinement (see the next section). The first four grids
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Vortex-induced vibration of a tethered sphere 885 A10-13

x
y

z

(c) (d)

(a) (b)

FIGURE 2. The hexahedral grid computational domain: (a) isometric view; (b) cubic block
placed around the sphere, which was decomposed into six square frustums; (c) isometric
view of the grid in a square frustum near the sphere surface; and (d) grid near the sphere
surface in the x–y plane.

Boundary Velocity, u Pressure, p

Inlet u= (U 0 0)− vc ∇p · η= 0
Sphere u= (0 0 0) ∇p · η= 0
Outlet ∇u · η= 0 p= 0

TABLE 1. Boundary conditions, where U is the upstream velocity, η is the outward
normal vector at the corresponding boundary and vc is the velocity of the sphere motion.

were generated by fixing the number of cells in the sphere boundary, N = 7350.
Grid 1 contains ' 0.79 million cells whose cell thickness at the sphere boundary, δl,
is 0.011D. Grid 2 was created by decreasing δl to 0.004D. This yielded '1.25 million
cells, with approximately 10–16 cells within the boundary layer before flow separation.
This grid is fine enough for this numerical study. However, a few more grids were
generated to confirm that the solution is insensitive to further refinement of the grid.
Grid 3 was generated by decreasing δl further down to 0.002D, but with the same
number of cells as grid 2 to obtain more concentration towards the sphere boundary.
Grid 4 was generated by doubling the number of nodes in the radial direction of
a square frustum with the same δl as grid 3. This increased the number of cells
to '1.96 million. Finally, to analyse the effect of grid refinement in the tangential
direction, grid 5 was generated by increasing the number of cells in the sphere
boundary, N, to 18 150 with δl= 0.004D, which is the same δl as grid 2.

The cubical fluid domain has two types of outer boundaries, inlet and outlet. Five
sides of the cube were treated as inlets and the velocity is prescribed on them. As
described earlier, the motion of the frame was taken into account through these inlets
by updating the frame velocity at each time step. The remaining side of the cube is
the outlet with a zero pressure. The inner boundary (sphere boundary) is treated as a
wall and assumed to have no-slip and no-penetration boundary conditions. The flow
is assumed in the x direction; boundary conditions for pressure and velocity at each
boundary are tabulated in table 1.
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Re= 500 Re= 1000

Study Cd Cl St Cd St− 1 St− 2

Present 0.57 0.06 0.18 0.49 0.2 0.32
Roos & Willmarth (1971) 0.547 — — 0.472, 0.483 — —
Morsi & Alexander (1972) 0.55 — — 0.46 — —
Sakamoto & Haniu (1990) — — 0.18 — 0.2 —
Mittal (1999) 0.57 — — — — —
Tomboulides & Orszag (2000) — — 0.167 — 0.2 0.35
Clift et al. (2005) 0.56 — — — — —
Poon et al. (2009) — — — 0.46 0.2 0.34
Poon et al. (2014) 0.56 0.05 0.15 0.46 0.185 0.33

TABLE 2. Comparison of computed time-averaged drag coefficient, Cd, time-averaged lift
coefficient, Cl, and Strouhal number, St, at Re= 500 and 1000 with other studies.

Re= 1200 and U∗ = 6.5 Re= 2000 and U∗ = 9

Grid δl No. cells A∗ Cd St f ∗ A∗ Cd St f ∗

Grid 1 0.011D 0.79× 106 0.56 0.73 0.15 0.96 0.87 0.88 0.12 1.06
Grid 2 0.004D 1.25× 106 0.57 0.73 0.15 0.96 0.88 0.85 0.12 1.04
Grid 3 0.002D 1.25× 106 0.57 0.73 0.15 0.96 0.89 0.85 0.12 1.04
Grid 4 0.002D 1.96× 106 0.58 0.73 0.15 0.96 0.89 0.86 0.12 1.04
Grid 5 0.004D 2.57× 106 0.57 0.73 0.15 0.96 0.87 0.84 0.12 1.04

TABLE 3. The sensitivity of the spatial resolution of the flow parameters of VIV of a
tethered sphere at m∗= 0.8 for (Re,U∗)= (1200, 6.5), representing mode I, and (2000, 9),
representing mode II. Here δl is the minimum thickness of the cells (in the radial direction)
at the sphere boundary in each grid. The oscillation amplitude of the sphere, A∗, the time-
mean drag, Cd, Strouhal number, St, and the ratio of vortex shedding frequency to the
natural frequency, f ∗ = f /fn, are listed.

3.2. Validation study
The flow past a rigidly mounted sphere was investigated at Re = 500 and 1000.
The computed values for the time-averaged drag and lift coefficients, Cd and Cl,
respectively, and the Strouhal number, St, are listed in table 2. As the lift coefficient
is negligible at Re = 1000, a secondary Strouhal number is calculated instead of Cl.
As can be seen, the present results closely match values calculated in other studies
(Roos & Willmarth 1971; Morsi & Alexander 1972; Sakamoto & Haniu 1990; Mittal
1999; Tomboulides & Orszag 2000; Clift, Grace & Weber 2005; Poon et al. 2009,
2014).

3.3. Grid-independence analysis
The sensitivity of the solution to the spatial resolution was investigated with a sphere
of mass ratio m∗= 0.8 at (Re,U∗)= (1200, 6.5) and (2000, 9). The reduced velocities
of 6.5 and 9 were chosen to represent mode I and II states, respectively. The r.m.s.
of the response amplitude, A∗, the time-averaged drag coefficient, Cd, the Strouhal
number, St, and the frequency ratio, f ∗ = f /fn, were calculated with each grid, and
the results are tabulated in table 3. As can be seen, the results match reasonably well
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Mode II

Mode I

10

U*
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z

11 12 13 14 15
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Present at Re = 2000
Jauvtis et al. (2001)

2

FIGURE 3. Comparison of the sphere response amplitude, A∗z , at Re = 1200 and 2000
with the experimental results of Jauvtis et al. (2001) at higher and varying Reynolds
numbers with a sphere of mass ratio m∗= 0.8 over the reduced velocity range U∗=[3, 14].
Consistent with their observations, the first two modes of sphere vibration states were
observed.

with each other for all five grids at both reduced velocities, as a result of employing
finer grids in each case. The percentage error difference among all of the quantities
from grid 2 to grid 5 is at most 3 %. Grid 3 was chosen for the simulations as it is
concentrated towards the sphere and better captures the boundary layers.

4. Results
4.1. FIV response of a tethered sphere

The flow past a tethered sphere of mass ratio m∗ = 0.8 with a tether length of
l∗ = 10 was investigated by fixing the Reynolds number at a particular value. The
sphere showed large-amplitude modes I and II vibration states at the larger Reynolds
numbers investigated, similar to the observation of previous experimental studies.
Figure 3 compares our results of the sphere vibration amplitude, A∗z =

√
2Zrms/D, at

Re= 1200 and 2000 with the experimental results of Jauvtis et al. (2001) conducted
with a sphere of the same mass ratio, where Z is the sphere displacement in the z
direction. As can be seen, the present results match reasonably well with those of
Jauvtis et al. Recall that, in the experiments, the Reynolds number was not fixed and
varied approximately between 2000 and 14 000. Consistent with their observations,
the sphere response amplitudes at modes I and II were approximately 0.5D and
0.85D, respectively.

In particular, at this mass ratio, Jauvtis et al. (2001) observed two peaks in the
amplitude response curve, corresponding to modes I and II. In contrast, at Re= 1200,
the sphere response amplitude varied smoothly from mode I to mode II without a
dip as seen in most of the amplitude response curves of tethered spheres (Jauvtis
et al. 2001; Govardhan & Williamson 2005). However, once the Reynolds number is
increased to 2000, the response curve formed a small peak for mode I as observed by
Jauvtis et al. Therefore, if the Reynolds number is further increased, this local peak
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885 A10-16 M. M. Rajamuni, M. C. Thompson and K. Hourigan

at mode I is expected to become more prominent. At Re= 1200, the highest vibration
amplitude occurred around U∗ = 8.5, and the vibration amplitude decreased beyond
this point, in contrast to the observation of Jauvtis et al. (2001) of almost constant
amplitude at larger U∗ values. However, as the Reynolds number is increased to
2000, the response amplitudes were higher than at Re= 1200. Moreover, the response
curve was closer to their response curve. Again, if the Reynolds number is further
increased, the response curve at mode II is also anticipated to become more similar to
the response curve of Jauvtis et al. observed at higher and varying Reynolds numbers.
These observations show that there is a considerable effect of Reynolds number on
the sphere response in this Reynolds-number range. Rajamuni et al. (2018a) also
showed that there is a substantial effect of the Reynolds number on FIV of an
elastically mounted sphere with one degree of freedom (DOF) in the laminar regime.

Compared to the observation of Jauvtis et al. (2001), the predicted response curves
look slightly shifted to the left. However, the response that was predicted at U∗ = 4
is not a periodic response as in mode I, albeit the shedding frequency is locked in
to the oscillation frequency. Similar to the results of Jauvtis et al., we also expected
mode I to occur around U∗ = 5 as the static vortex shedding frequency is fvor ≈ 0.2.
Therefore, at U∗ = 4, the sphere may be in transition from no oscillation to VIV.
Nonetheless, we observed mode I vibration at a slightly lower reduced velocity
compared to that observed by Jauvtis et al. (2001). This difference may be due to
the effect of Reynolds number. Note that, for the predictions, the Reynolds number
was fixed, whereas it was allowed to vary with U∗ in the experiments.

To explore the effect of Reynolds number in the laminar regime, another set of
simulations was conducted at Re = 500 with the same mass ratio and tether length.
Figure 4(a) shows a comparison of the sphere response amplitude of Re= 500, 1200
and 2000 for the reduced velocity range U∗ = [3, 32]. As can be seen, the sphere
response amplitude increased globally as the Reynolds number increased over U∗ ∈
[4.5, 16]. As discussed earlier, it showed periodic mode I and II vibrations over U∗≈
[4.5, 7] and [8, 16], respectively, at Re = 1200 and 2000. At Re = 500, a periodic
vibration response was found over U∗ = [4.5, 12]. The response curve took a bell
shape with a maximum amplitude of ≈ 0.45D. At this Reynolds number, modes I and
II were not able to be distinguished clearly from the amplitude response curve alone.
Govardhan & Williamson (2005) found that mode I occurred around (U∗/f ∗)St = 1
while mode II occurred in the range of (U∗/f ∗)St≈[1.4, 2]. However, if the amplitude
is plotted against (U∗/f ∗)St, both modes I and II responses became clear, even at
Re= 500, from the range of (U∗/f ∗)St (see figure 4b).

Similar to the Re = 500 case, Rajamuni et al. (2018a) also observed bell-shaped
response curves at Re = 300 and 800 with an elastically mounted sphere; these
were named ‘branch A’. Moreover, the maximum amplitudes they observed at those
Reynolds numbers were ≈ 0.4D and 0.6D, respectively. This observation leads to
the conclusion that a sphere displays a trend of increasing amplitude globally over
U∗ ≈ [4, 16], as the Reynolds number increased from 300 to 2000, regardless of
whether it was an elastically mounted or a tethered sphere.

For U∗ > 16, the sphere showed an aperiodic response for all three Reynolds
numbers. Although the amplitudes were scattered, they showed initially an increasing
trend and then levelling off around 0.8D as the reduced velocity increased to 34.
Rajamuni et al. (2018a) also reported a similar behaviour at Re = 800 for U∗ > 13,
but with a purely increasing trend up to U∗ = 50. As Rajamuni et al. claimed,
this intermittent burst of vibration strongly resembles mode IV vibration discovered
by Jauvtis et al. (2001) with a heavy sphere of m∗ = 80 for U∗ > 100. This begs
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FIGURE 4. The sphere response curves at Re = 500 and 1200 of a tethered sphere of
m∗ = 0.8: the normalized amplitude, A∗z , plotted against (a) the reduced velocity, U∗, and
(b) the normalized velocity, (U∗/f ∗)St.

the question: ‘Why is mode IV observed just after mode II without an intervening
mode III?’ A discussion of this is given in § 4.3.

Williamson & Govardhan (1997) and Govardhan & Williamson (2005) identified
that the motion of a tethered sphere is principally in the transverse direction.
Consistently, we also observed large-amplitude vibrations in the transverse (z)
direction compared to the streamwise (x) and lateral (y) directions (see figures 5a and
6a). For mode I and II regimes, the sphere showed a negligible amplitude in the lateral
direction while displaying a small amplitude of ≈0.08D in the streamwise direction,
as shown in figure 5(a) at Re = 1200. This is consistent with the observation of
Williamson & Govardhan (1997) with a sphere of m∗ = 0.73 and tether length ratios
l∗ = 8.9 and 3.8.

The periodicity of the sphere vibration, λA, is defined as
√

2Zrms/Zmax, where Zmax
is the maximum amplitude observed at each U∗. According to this definition, λA take
values from 0 to 1, with λA = 1 representing the most periodic response. For both
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FIGURE 5. The FIV response of a tethered sphere at Re= 1200 over the reduced velocity
range U∗=[3,32]: (a) sphere vibration amplitudes A∗x , A∗y and A∗z in the streamwise, lateral
and transverse directions, respectively; (b) the periodicity of the sphere vibration, λA =√

2Zrms/Zmax; and (c) frequency ratio, f ∗ = f /fn.

modes I and II, the sphere vibrations were highly periodic. However, the vibration
was more periodic at the peak of mode II compared with the response at mode I (see
figures 5b and 7a,c). For both modes I and II, the sphere vibrated in synchrony with
the vortex shedding frequency, fs, and was close to the system’s natural frequency,
as expected (see figure 5c). Govardhan & Williamson (1997, 2005) observed for
light spheres (m∗ < 1) across the mode II regime and above that the dynamic vortex
shedding frequency remained between the static body vortex shedding frequency, fvor,
and the natural frequency of the system.
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FIGURE 6. The FIV response of a tethered sphere at Re= 500 over the reduced velocity
range U∗ = [3, 32]: (a) sphere vibration amplitude, A∗; (b) the periodicity of the sphere
vibration, λA =

√
2Zrms/Zmax; and (c) frequency ratio, f ∗ = f /fn.

As the sphere response curve for Re = 500 deviated from the response curve
observed at higher Reynolds numbers over the mode I and II regimes (U∗=[4.5, 12]),
a negligible amplitude was observed in both the streamwise (x) and lateral (y)
directions (see figure 6a). Vibrations in the transverse (z) directions were highly
periodic as in the peak of mode II (figure 6b). This is indeed a VIV response
( f = fs = fn). From these observations, we can predict that the response of a tethered
sphere collapses well with the response of an elastically mounted sphere of one DOF
for low Reynolds numbers over the modes I and II regimes.
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FIGURE 7. (a,c,e) Time histories and (b,d, f ) sphere trajectories in the x–z plane at Re=
1200, where τ = tU/D is the non-dimensional time and T is the period: (a,b) at U∗ = 6
(mode I), (c,d) at U∗ = 9 (mode II), and (e, f ) at U∗ = 27.4 (mode IV).

As the reduced velocity increased beyond U∗ = 12 (beyond the mode II regime),
the periodicity of the sphere response gradually decreased at Re= 1200 and reached
a value of ≈0.5 for the mode IV regime (see figure 5b). A similar behaviour was
observed at Re = 500 as well. However, as U∗ was increased, mode IV appeared
quickly after the periodic vibrations and the periodicity of the response was even
lower. The sphere vibration was intermittent in mode IV, as shown in figure 7(e) at
U∗= 27.4, and it followed an irregular trajectory without a clear pattern, as shown in
figure 7( f ). As λA decreased, the sphere displacement in the streamwise and lateral
directions became slightly more significant. The streamwise amplitude was almost
a constant value of ≈0.3D at Re = 1200 and ≈ 0.2D at Re = 500 over mode IV.
The lateral amplitude showed a linearly increasing trend as the reduced velocity
increased beyond 16 and was almost half the transverse amplitude at the highest
reduced velocity considered (U∗ = 32) at both Reynolds numbers. This shows that
the randomness of the signal increases with reduced velocity.

Figure 8 displays the time-averaged drag coefficient, Cd, as a function of the
reduced velocity for all three Reynolds numbers considered. An increment in Cd
is observed when it vibrated periodically, as found in previous experimental and
numerical studies (Gottlieb 1997; Williamson & Govardhan 1997; Behara et al.
2011). At Re= 500, as the sphere began to vibrate at U∗= 4.5, an ∼ 33 % increment

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 M

on
as

h 
U

ni
ve

rs
ity

, o
n 

12
 A

pr
 2

02
1 

at
 0

5:
41

:1
4,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

9.
92

8

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.928


Vortex-induced vibration of a tethered sphere 885 A10-21

0 2 4 6 8 10 12 14 16 18 20 22 24

Re = 500
Re = 1200
Re = 2000

26 28 30 32 34

U*

0.9

0.8

0.7

0.6

0.5

0.4

Cd

FIGURE 8. Variation of the time-averaged drag coefficient, Cd, with the reduced velocity
at Re = 500, 1200 and 2000. The horizontal grey lines show Cd calculated with a
stationary sphere at Re= 500 (dotted line) and Re= 1200 (solid line).
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FIGURE 9. The time-mean layover angle, θ̄L (angle of tether from the y direction), as a
function of reduced velocity. The dotted lines represent the estimated θ̄L from the drag
coefficient at each Reynolds number.

of Cd was observed from the value for a stationary sphere. Similar to the observation
of Rajamuni et al. (2018a) for their branch A, this increment then decreased over
the synchronization regime. However, they observed a sharp turn at the beginning
of the range, while we observed a smooth turn. At both Re = 1200 and 2000, Cd

showed another jump at the beginning of mode II, as Govardhan & Williamson
(1997) observed. The increments of Cd were ∼60 % and ∼100 % at modes I and II,
respectively. In the mode IV regime, even larger-amplitude vibrations are observed,
whereas the drag coefficient hardly changed at all. This is because mode IV is not a
VIV response, as discussed in § 4.4.

The time-mean layover angle, θL, is defined as the angle of the tether to the lateral
direction (vertical). An exponentially increasing trend of θL with a slight variation
in mode II was observed for all of the Reynolds numbers considered (see figure 9).
Since the lift force is comparatively small, the layover angle can be estimated from the
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non-dimensional drag and buoyancy forces as

tan(θ̄L)=
Cd

(1−m∗)α
. (4.1)

As can be seen in figure 9, the calculated θL is coincident with the estimated values.
Note that, even though Cd is constant over the mode IV regime, tan(θL) increases; this
is because α = 4/(3Fr2) is not constant in this numerical study.

In this study, the tether was assumed rigid and the torsion of the sphere was
neglected. However, it is worth exploring the nature of the sphere response when
the sphere is allowed to rotate through the axis of the tether, according to the
moment acting on it. Nevertheless, the moments acting on the sphere were found
to be negligible compared to the forces acting on it (moments <1 % forces). Thus,
it can be assumed that the sphere undergoes a very small amount of rotation when
it is also subjected to torsion. Our previous study (Rajamuni et al. 2018b) and
the study of Sareen et al. (2018a) investigated the VIV response of an elastically
mounted sphere under a forced rotation. Both of these studies found that the effect
of rotation is negligible on the VIV response of the sphere, for small rotation rates.
The investigation of Sareen et al. (2018c) also found that the rotary motion of the
sphere has a negligible effect on the VIV response of a sphere, for small velocity
ratios. This combined evidence indicates that the VIV response of a tethered sphere
is highly unlikely to be altered by the sphere torsion.

From the findings of this study and previous experimental and numerical studies,
a brief discussion of the different modes of sphere vibrations is provided in the
following three subsections.

4.2. Modes I and II
Modes I and II are the only VIV responses observed for a sphere out of the four
vibration modes found. Mode I response is due to a natural resonance, where the
vibration of the sphere is excited when the natural frequency of the system, fn, is
close to the stationary-body (non-VIV) vortex shedding frequency. For example, at
Re= 1200, the vortex shedding frequency of a stationary sphere, fvor, is approximately
0.2, which means that the natural oscillation frequency and the stationary-body vortex
shedding frequency coincide at U∗= 5. As a result of this, mode I was observed close
to U∗ = 5 (see figure 5a).

In almost all of the VIV studies, the sphere showed large-amplitude periodic
vibrations even after the resonance range, and this is known as the mode II vibration
state. As the sphere is allowed to translate freely, a reduction is observed in the vortex
shedding frequency from the value for a static sphere. In this manner, the dynamic
shedding frequency deviated from the static shedding frequency and synchronized
with the natural frequency (see figures 5c and 6c). As a result, the sphere showed
large-amplitude vibration (mode II) after the resonance state.

The mode II response was observed beyond the mode I regime as the reduced
velocity was increased. The sphere response amplitude varied smoothly as the
vibration state transitioned from mode I to mode II, in contrast to the distinct
branches observed in the amplitude response curve of an elastically mounted cylinder
(one DOF). The sphere response curve showed a small local peak in mode I for light
tethered spheres (m∗ < 1); for example, the observations of Williamson & Govardhan
(1997) at m∗ = 0.729 with both l∗ = 3.83 and 8.93 and at m∗ = 0.082 with l∗ = 9.28,
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those of Govardhan & Williamson (1997) at m∗ = 0.26, and those of Jauvtis et al.
(2001) at m∗= 0.8, can be mentioned. However, the local peak in mode I is obscured
for heavy spheres (m∗ > 1), especially for elastically mounted spheres, as discussed
by Govardhan & Williamson (2005). The range of U∗ values varies for different
modes; mode I is observed for a very short range (within ∼ (1–2)U∗) compared with
mode II. This is expected, as mode I is the result of resonance.

The difference between modes I and II was studied by Govardhan & Williamson
(2005) by analysing the phase between sphere oscillation and the fluid forces acting
on the sphere. Lighthill (1986) showed that the total fluid force, Ft, can conveniently
be split into two components, a ‘potential force’ component (Fp) related to the
potential added mass and a ‘vortex force’ component (Fv) related to the dynamic
vorticity. For a cylinder, Govardhan & Williamson (2000) found a shift in the total
phase, φt (the phase between the sphere displacement and the total force), or the
vortex phase, φv (the phase between the sphere displacement and the vortex force),
as the vibration state transitions from one branch to another. Analogously, Govardhan
& Williamson (2005) observed a shift in the vortex phase, while the total phase
remains almost constant, as the sphere transitions from mode I to mode II. In a
similar fashion, we found that the vortex phase shifted from 0◦ to 180◦ as the
vibration state transitioned from mode I to mode II, while the total phase remained
at ≈ 0◦, as shown in figure 10(c,d) for Re= 500 and 1200, respectively.

For an elastically mounted cylinder, Govardhan & Williamson (2000) argued that a
sudden shift in total or vortex phase can be expected as the body oscillation frequency
passes the natural frequency of the system (or the frequency ratio crosses the f ∗ = 1
line). Consistent with this argument, we observed that the shift in φv occurs as
the frequency ratio crosses the f ∗ = 1 line (see figure 10e, f ). In addition to this,
Govardhan & Williamson discussed that, for a purely sinusoidal response with zero
damping ratio, the total or vortex force can only be either phase-aligned or be 180◦
out of phase with the body vibration. That discussion related to an elastically mounted
cylinder. The motion of a tethered sphere has no damping effect (see equation (2.21)).
Therefore, if the sphere response is periodic, we can predict that φt and φv can be
either 0◦ or 180◦ in a similar way. Consistently, we observed that φt and φv were
mostly either 0◦ or 180◦.

The response amplitude of mode II was found to be higher than the amplitude
of mode I (for some cases, approximately twice the amplitude of mode I) by
experimental studies at higher Reynolds numbers. We also observed a similar
behaviour at Re= 1200 and 2000. However, for Re< 1000, the amplitude of mode II
was observed to be similar to that of mode I (present study at Re= 500 and Rajamuni
et al. (2018a) at Re = 300 and 800). Therefore, the effect of Reynolds number on
the amplitude of mode II is not negligible in the laminar regime.

4.2.1. Effect of Reynolds number
Govardhan & Williamson (2005) showed that the effect of Reynolds number is

negligible for the VIV of a sphere over a range of Re∈ [2000,12 000] with the help of
the Griffin plot and the tether length ratio. However, the effect of Reynolds number
is significant over Re ∈ [300, 2000]. Figure 11 plots the sphere predicted responses
together with the results of Rajamuni et al. (2018a) with elastically mounted spheres
at five different Reynolds numbers over modes I and II regimes. As can be seen, the
response amplitude increases globally with the Reynolds number. This effect is more
significant over the mode II regime than the mode I regime. In addition, the mode II
regime widened as the Reynolds number increased in this range. Mode II appears to
be more sensitive to the Reynolds number.
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FIGURE 10. Variation of (a,b) sphere response amplitude, and (c,d) the total phase, φt,
and vortex phase, φv , over modes I and II regimes. (e, f ) The frequency ratio crosses the
f ∗ = 1 line as the vortex phase shifts from 0◦ to 180◦. Column (a,c,e) for Re= 500 and
(b,d, f ) for Re= 1200.
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FIGURE 11. The amplitude response curves at different Reynolds numbers at the modes I
and II regimes: D, at Re = 300 of Rajamuni et al. (2018a) with an elastically mounted
sphere of m∗= 2.865;@, at Re= 500;6, at Re= 800 of Rajamuni et al. (2018a) with an
elastically mounted sphere of m∗ = 2.865;u, at Re= 1200; and × at Re= 2000.

4.2.2. Effect of mass ratio
Govardhan & Williamson (2005) studied the effect of mass ratio on the sphere

response and found that the response amplitude increased and the synchronization
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FIGURE 12. Wake structures in modes I and II at Re= 500, 1200 and 2000 visualized
with isosurface of Q at 0.01. Flow from left to right.

regime widened as the mass ratio decreased over the range m∗ ∈ [2.8, 198.4]. For
light spheres (m∗ < 1), once the sphere reached its maximum amplitude (in mode II)
by diverging from the usual decreasing trend, a levelling-off trend was observed
in experiments. For example, see Williamson & Govardhan (1997) at m∗ = 0.729,
Govardhan & Williamson (2005) at m∗ = 0.45 and Jauvtis et al. (2001) at m∗ = 0.8.
However, in this numerical study, we observed a decreasing trend of amplitude
after the maximum amplitude at m∗ = 0.8. This difference from the experiments is
most probably due to the effect of Reynolds number. We showed that the effect of
Reynolds number is higher in the mode II regime. Therefore, if Re was increased
further, there is an expectation that there will be a levelling-off trend towards the end
of mode II. In addition, for light spheres and mode II, the shedding frequency was
slightly higher than the natural frequency of the system.

4.2.3. Wake structure
The vortical structures of the wake were visualized with an isosurface

of the Q-criterion (the second invariant of the velocity tensor) introduced by
Hunt, Wray & Moin (1988). The wake structures observed in modes I and II
regimes are shown in figure 12 and in supplementary movies (available online at
https://doi.org/10.1017/jfm.2019.928). As can be seen, at Re = 500, two trails of
hairpin vortices form the wake in both modes I and II regimes. These wake structures
strongly resemble the wakes observed by Govardhan & Williamson (2005) for modes I
and II, and by Rajamuni et al. (2018a) for their branch A. Two hairpin loops were
shed per sphere oscillation cycle and these loops were disconnected and two-sided.
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FIGURE 13. Results of DMD analysis of the 2-D velocity field over 10 oscillation cycles
of mode I at Re = 500: (a) plot of eigenvalues of the companion matrix; (b) frequency
spectrum; (c–f ) dynamic modes KM (visualized by vorticity field) corresponding to
frequencies f0, f1, 2f1 and 3f1, respectively; (g) actual vorticity field; (h–j) reconstructions
of the vorticity field using all the KMs, only the dominant KM ( f0+ f1), and the dominant
KM and its higher-order harmonics ( f0 + f1 + 2f1 + 3f1 + 4f1 + 5f1 + 6f1), respectively.

Furthermore, each vortex loop was accompanied by a tail. These hairpin loops were
symmetric through the x–z plane as expected. Govardhan & Williamson (2005)
explained that the two streamwise vortex loops associated with the orientation of
the hairpin loops create a lift force similar to the vertical lift force associated with
aircraft trailing ‘tip vortices’. As the hairpin loops are two-sided, the lift force is
periodic and hence the sphere is excited to vibrate.

As the Reynolds number is increased, small-scale structures begin to appear in the
wake. In mode I, the underlying wake structure was only slightly modified, continuing
to show two strong hairpin loops per oscillation cycle, along with smaller-scale
structures. However, in mode II, the wake was modified further. Multiple loops were
observed per oscillation cycle in the higher-Reynolds-number cases. Moreover, those
loops were mostly connected with each other.

4.2.4. Dynamic mode decomposition
For further examination of the wake, and to identify the dominant wake modes,

DMD was performed. The nature of the wake of mode I (U∗ = 5.5) was studied
at Re = 500 using the two-dimensional (2-D) velocity field (on the x–z plane) over
10 oscillation cycles with 23 snapshots per cycle. As figure 13(a) shows, the plot of
eigenvalues of the companion matrix lies in a unit circle, indicating a periodic wake.
Moreover, the frequency, f1, of the dynamic mode with the highest magnitude was
identical to the oscillation frequency of the sphere, as expected. The sphere oscillation
was not purely sinusoidal in this case; therefore, the frequency spectrum contained
other frequencies besides the dominant frequency and its higher-order harmonics (see
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FIGURE 14. Results of DMD analysis of the 2-D velocity field over 24 oscillation cycles
of mode II at Re= 1200: (a) plot of eigenvalues of the companion matrix; (b) frequency
spectrum; (c) actual vorticity field; (d–f ) reconstructions of the vorticity field using all
the KMs, only the dominant KM ( f0 + f1), and the dominant KM and its higher-order
harmonics ( f0 + f1 + 2f1 + 3f1 + 4f1), respectively.

figure 13b). The vorticity field was used to visualize the Koopman modes (KMs), and
to compare the reconstruction using these modes with the actual field (see figure 13c–j).
The reconstruction with all modes, shown in figure 13(h), is identical to the actual
field shown in figure 13(g), providing some validation to the analysis. The dominant
KM has captured the main features of the field (see figure 13i). Moreover, when
its higher-order harmonics are also used, it looks much closer to the actual field –
compare figure 13( j) and (g).

The DMD analysis of the 2-D velocity field of mode II (U∗ = 9) at Re = 1200
over 24 oscillation cycles with 48 snapshots per cycle was performed, and results
are presented in figure 14. The plot of eigenvalues of the companion matrix provides
evidence of a highly periodic wake. The sphere oscillation is purely sinusoidal
in mode II. Inferred from this, the frequency spectrum in mode II for Re = 500
(not shown) contained only the dominant frequency and its higher-order harmonics.
However, as Re was increased to 1200, the frequency spectrum was dense with other
frequencies, showing the effect of Reynolds number (see figure 14b). Nevertheless, the
underlying streamwise vortex structure observed for the dominant KM (see figure 14e)
was synchronized with the sphere oscillation, so the sphere showed large-amplitude
mode II vibrations. This was also clearly visible from the isosurfaces of Q when 3-D
velocity fields were used for the analysis, as shown in figure 15 for both modes I
and II.

4.2.5. Robustness of modes I and II
Earlier, we showed that mode II is quite sensitive to the Reynolds number for

Re ∈ [300, 2000]. In addition, mode II also appears sensitive to disturbances and
other factors. For example, the experimental study of Sareen et al. (2018a) and the
computational study of Rajamuni et al. (2018b) found that the mode II response
weakens if even weak rotation (in the transverse direction) is imposed on the sphere.
In particular, they observed a considerable reduction in the maximum oscillation
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FIGURE 15. Isosurfaces of the wake at modes I and II reconstructed from all of the KMs
(a,b) and with only the dominant KM (c,d). The dominant KM has captured the main
feature of the flow.

amplitude and a narrowing of the synchronization regime. Furthermore, Sareen
et al. (2018b) identified that the proximity of the sphere to the free surface greatly
influences mode II. From these observations, we can conclude that mode I is more
robust than mode II. Perhaps this is unsurprising, as mode I is the primary resonant
response.

4.3. Mode III
After the mode II regime, Jauvtis et al. (2001) discovered another periodic vibration
state, namely mode III. It was an unexpected finding that was first observed with a
sphere of m∗ = 28 with water channel experiments. To study this mode further, they
performed a set of wind tunnel experiments with a tethered sphere of m∗ = 80 for
a wide range of U∗. Mode III was found to occur after a desynchronization regime
for a broad range of U∗ from 20 to 40. They repeated this set of experiments with a
larger tunnel to check whether it was an experimental artifact. Mode III was evident
even with the larger tunnel. In addition to that, it was observed with a sphere of
m∗= 940. The sphere response was remarkably periodic and the vibration amplitudes
were almost the same as for mode II. Not only tethered spheres, but also elastically
mounted spheres, showed mode III vibrations, but without a desynchronization regime;
for example, this was found by Govardhan & Williamson (2005) with m∗ = 53.7 and
Sareen et al. (2018a) with m∗ = 14.2.

As a consequence of the high mass ratio in previous experiments, the oscillation
frequency of mode III was identical to the system’s natural frequency. Nevertheless,
it was difficult to explain the existence of mode III, since the principal vortex shedding
frequency is 3–8 times higher than the oscillation frequency. Govardhan & Williamson
(2005) observed multiple small-scale structures in the wake of mode III. There was no
clear association between vortex shedding and full or half wavelength of the sphere
vibration.

Mode III is not possible to explain with the classic lock-in theories and such a
vibration state does not exist for the case of cylinder free vibration. Govardhan &
Williamson (2005) argued that the flow must create a forcing on the body at this
low frequency, sufficient to deliver a net energy transfer to the body motion. They
measured the streamwise vorticity using DPIV and found a two-sided chain of trailing
vortex pairs that is locked in with the sphere frequency. With this observation, they
claimed that there is a net positive energy transfer in the vibration over a cycle,
enabling the highly periodic mode III. A tethered or an elastically mounted sphere
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is intrinsically unstable. Govardhan & Williamson (2005) argued that, if the sphere
is perturbed in the transverse direction, it can generate a self-sustaining vortex force
to enhance the body vibration, to possibly a large amplitude. In the mode III regime,
the sphere is highly likely to be perturbed, as its wake is naturally responsive to
low-frequency disturbances (Brücker 2001). Hence, Govardhan & Williamson (2005)
concluded that mode III is an example of ‘movement-induced vibration’, categorized
by Naudascher & Rockwell (2012).

Compared to the first two vibration modes, mode III has been little examined;
only a couple of studies have reported it, and its nature is not well understood
yet. Therefore, further investigation is presented here. We attempt to enhance the
understanding of mode III, through some previous experimental observations together
with selected simulations.

We observed that the mode III state appears only with heavy spheres. In particular,
Jauvtis et al. (2001) found mode III for spheres of m∗ = 28, 80 and 940, while
Govardhan & Williamson (2005) observed it for spheres of m∗ = 11.7, 31.1, 53.7
and 75, and Sareen et al. (2018a) for a sphere of m∗ = 14.2. From this, we can
hypothesize that mode III arises only for high-inertia systems (heavy spheres). We
intended to check this hypothesis with a sphere of higher mass ratio. Unfortunately,
simulations are very costly for higher-mass-ratio cases, since it takes a very long
time to reach the steady state. Therefore, only a couple of runs were feasible.

At m∗ = 0.8 and Re = 1200, intermittent mode IV vibrations were observed
for U∗ ∈ [16, 32] just after mode II, without a trace of mode III. To study the
possibility of mode III being excited, we performed a simulation with a sphere of
m∗ = 80 at U∗ = 30 and Re = 1200. This U∗ was chosen since mode III emerged
predominantly for the reduced velocity range U∗ ∈ [20, 40] in earlier experimental
studies. Figure 16(a) shows the time history of the sphere displacement in this case.
As can be seen, the sphere vibration has become fairly periodic from intermittent
vibration as the mass ratio increased to 80. The sphere response amplitude converged
to a value of ≈0.5D after a long transient period. The sphere vibration is highly
periodic. Moreover, its frequency coincides with the system’s natural frequency, as
expected at this high mass ratio. However, neither the total nor vortex forces were
periodic, and those forces were small in magnitude with a high frequency (see
figure 16b). As seen in previous experimental studies, the vortex shedding frequency
was higher than the sphere frequency; for this case, it was approximately six times
higher. Thus, this is essentially a mode III response. Figure 17 shows the wake
structure observed. Figure 16(c,d) shows the sphere trajectory in y–z and x–z planes.
Its displacement in the streamwise (x) and lateral (y) directions were negligible
compared to the displacement in the transverse (z) direction. However, the streamwise
frequency is the same as the transverse frequency, in contrast to modes I and II,
for which the streamwise frequency is double the transverse frequency. Therefore,
the sphere trajectory in mode III deviated from the figure ‘8’ shape to a figure ‘0’
shape. This indicates that mode III is essentially not an extension of mode II, but a
completely different vibration state.

4.3.1. Dynamic mode decomposition
The wake of mode III was investigated with DMD using the velocity field over

10 sphere oscillation cycles, with 48 snapshots per cycles. As figure 18(a) shows,
eigenvalues of the companion matrix lie mainly on the unit circle, indicating a strong
periodicity of the wake. Additionally, the dominant frequency of the wake, identified
from the frequency spectrum shown in figure 18(b), f1 = 0.0335, is identical to
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FIGURE 16. The sphere response at m∗ = 80, U∗ = 30 and Re= 1200: (a) time history;
(b) sphere displacement together with total and vortex force coefficients, Ct and Cv ,
respectively; and (c,d) trajectory of the sphere in y–z and x–z planes, respectively, at the
steady state.

x

y

z

x

FIGURE 17. Wake observed in mode III (Re = 1200, m∗ = 80, l∗ = 10 and U∗ = 30)
visualized with isosurface of Q= 0.001. Flow from left to right.

the sphere oscillation frequency. The frequency spectrum was dense with several
frequencies, showing the effect of Reynolds number. Even though a number of small
loops were shed per oscillation cycle, the wake displays a long-wavelength structure
in the downstream direction corresponding to the sphere oscillation. Figure 18(c,d)
shows the isosurfaces of Q of the reconstructed field with all of the KMs and only
the dominant KM pair, respectively. The reconstruction with only the dominant KM
pair consists of long vortical structures, similar to the observation of Govardhan &
Williamson (2005). These long structures were also visible in the 2-D vorticity field
(not shown).

4.3.2. The sphere response beyond the mode III regime
To compare with the results of Jauvtis et al. (2001) at higher U∗ values, two more

simulations were performed at U∗= 70 and 150. After mode III, they have observed a
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FIGURE 18. The DMD analysis of mode III (Re = 1200, m∗ = 80) for 10 oscillation
cycles with 48 snapshots per cycle: (a) plot of eigenvalues of the companion matrix;
(b) frequency spectrum; and (c,d) isosurfaces of Q using all KMs and only the dominant
KM conjugate pair, respectively.

desynchronization regime for the U∗ range of ≈[40, 100] and then mode IV vibration
for U∗ > 100 with a sphere of m∗ = 80. Consistent with their results, we observed a
small-scale vibration at U∗=70 and mode IV at U∗=150 (see figure 19). As the mass
ratio increased from 0.8 to 80, mode III vibration was predicted before mode IV and
the ranges of these modes match well with the experimental result of Jauvtis et al.
(2001). From these observations it is evident that mode III is essentially a movement-
induced vibration, as Govardhan & Williamson (2005) explained.

4.3.3. Effect of the mass ratio
The self-excitation initiated by the sphere wake pattern in this low-frequency regime

becomes regular most likely as a result of the high inertia of the system. If the mass
ratio is too small, then the sphere motion may not become regular and will show
random vibration (mode IV), as observed at m∗= 0.8. To investigate this issue further,
a set of simulations was conduced at Re=1200 and U∗≈30 by varying the mass ratio
from 0.8 to 80. The sphere was found to vibrate in an irregular manner (mode IV)
at m∗ = 0.8. Although the sphere mainly vibrated in the transverse (z) direction, the
components in the streamwise and the lateral directions were significant. This response
will be discussed in detail in the next subsection. As figure 20(a) shows, the response
amplitudes in the streamwise and lateral directions decayed with increasing mass ratio.
Figure 21 shows the time history of the sphere vibration in the z direction for the mass
ratios m∗ = 0.8, 3, 10, 20, 40, 60 and 80. The irregular sphere response observed at
m∗= 0.8 gradually regulated as the mass ratio increased. The periodicity of the signal
became higher as the mass ratio increased (see figure 20b). The sphere appears to
show mode III response beyond m∗ ≈ 20.

Figures 22 and 23 show the phase plots and the Poincaré maps generated from the
transverse displacement of the sphere at the above-mentioned mass ratios. The phase
plot is somewhat disordered for low values of m∗, while the phase plot is regular,
showing a circular orbit, at higher values of m∗. Consistently, the Poincaré maps are
spread out for small mass ratios, and for higher mass ratios the maps are concentrated
at the origin. These observations provide evidence of a chaotic response (mode IV)
for m∗ = 0.8, 3 and 10, and a regular response for m∗ > 20. As can be seen from
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FIGURE 19. The sphere response at m∗ = 80 and Re = 1200. (a) Comparison of the
response amplitudes for m∗ = 80 calculated for U∗ = 30, 70 and 150 denoted by � with
the amplitude of m∗ = 0.8 denoted by u. The dotted line shows the expected response
amplitude curve for m∗ = 80. (b,c,d) The time histories at m∗ = 80 for U∗ = 30, 70 and
150, respectively.
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FIGURE 20. The sphere response as a function of mass ratio at Re= 1200 and U∗ = 30:
(a) the amplitude response in all three directions and (b) periodicity of the sphere
response.

figures 22 and 23, the transition from mode IV (chaotic) to mode III (regular) with
increasing mass ratios is a smooth transition.

4.3.4. Robustness of mode III
The mode III state can be identified as an unstable state that can only appear for

high-inertia spheres. Moreover, mode III appears quite sensitive to disturbances. For
example, Sareen et al. (2018a) observed a mode III type of response for U∗ > 14
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FIGURE 21. Time history of the sphere displacement in the z direction for 30 oscillation
cycles for the mass ratios, m∗= 0.8, 3, 10, 20, 30, 40, 60 and 80. The Reynolds number
of the flow is Re= 1200 and the reduced velocity is ≈30. The sphere vibration smoothly
transitioned from aperiodic to periodic as the mass ratio increased.
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FIGURE 22. Phase plots of transverse displacement, Z, for m∗ = 0.8, 3, 10, 20, 30, 40,
60 and 80, at Re= 1200 and U∗ ≈ 30.

for an elastically mounted sphere with zero rotation. However, when a rotation was
imposed on the sphere, mode III was no longer observed. Mode III seems weaker
than mode II. As a result, we can conclude that mode III is likely to disappear if a
continual disturbance is applied on the system.

4.4. Mode IV
Jauvtis et al. (2001) observed intermittent bursts of large-amplitude vibration
(mode IV) after the mode III regime with a sphere of m∗ = 80 for U∗ > 100. The
periodicity of mode IV was found to be λA = 0.5 compared to the highly periodic
first three modes (λA = 1). They found that the sphere vibration frequency remained
very close to the system’s natural frequency throughout the range of velocity up to
at least U∗ = 300. Jauvtis et al. argued that mode IV cannot be a VIV response as
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FIGURE 23. Poincaré maps for Z/D, taken from each upward zero crossing of the sphere
transverse displacement for various mass-ratio values: m∗= 0.8, 3, 10, 20, 30, 40, 60 and
80, at Re= 1200 and U∗ ≈ 30.

the vortex shedding frequency is much higher than the sphere frequency and there is
no correlation between those two frequencies.

Rajamuni et al. (2018a) also observed a mode IV type of aperiodic vibration
in their numerical study at Re = 800, and called it the intermittent branch. It was
observed immediately following their periodic branch A for U∗ > 14 up to U∗ = 50
with a sphere of m∗ = 2.685. In mode IV, Rajamuni et al. (2018a) found that the
r.m.s. of the oscillation amplitude linearly increased with increasing U∗, similar to the
observation of Jauvtis et al. (2001). It was quite surprising how a small-mass-ratio
sphere could show mode IV response for relatively low reduced velocities. Rajamuni
et al. (2018a) conjectured that it may be an effect of zero structural damping.
Moreover, they argued that an increased damping may reduce or even suppress these
intermittent vibrations.

Mode IV type intermittent response was observed in this numerical study with a
tethered sphere of m∗=0.8 at all three Reynolds numbers considered. In particular, the
sphere showed mode IV at Re= 500 for U∗ > 14 and at Re= 1200 for U∗ > 16. For
this mass ratio, mode IV appeared immediately after mode II without an intervening
mode III, as Rajamuni et al. (2018a) observed with an elastically mounted sphere.
Figure 24 shows the trajectories of the sphere at five different U∗ values in both x–z
and y–z planes at Re= 1200. In contrast to the first three modes, the sphere showed
significant motion in the streamwise and the lateral directions as well. As can be seen,
the regularized trajectory observed at U∗ = 13.9 (mode II) became irregular as the
sphere transitioned to mode IV. Moreover, the sphere followed a random trajectory
with a large amplitude in the transverse (z) direction. However, the dominant sphere
oscillation frequency was close to the system’s natural frequency. In this mode, no
increment was found in the time-mean drag coefficient (figure 8) and the fluctuation
force components were small in magnitude. There was no correlation between forces
and the sphere vibration. In addition, the wake was irregular in strength and frequency,
with several vortex loops formed per oscillation cycle (see figure 25).

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 M

on
as

h 
U

ni
ve

rs
ity

, o
n 

12
 A

pr
 2

02
1 

at
 0

5:
41

:1
4,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

9.
92

8

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.928


Vortex-induced vibration of a tethered sphere 885 A10-35

1.0

9.70 9.85 10.00 9.50 9.75 10.00 7.50 8.25 9.00 5.5 6.5 8.08.6 9.1 9.6

1.5 2.0 1.5 2.5 3.5 2.8 3.8 4.8 4.6 5.6 6.6 6.6 7.6 8.6

1.5

0

-1.5

1.5

0

-1.5

1.5

0

-1.5

1.5

0

-1.5

1.5

0

-1.5

1.5

0

-1.5

1.5

0

-1.5

1.5

0

-1.5

1.5

0

-1.5

1.5

0

-1.5

Z/D

Z/D

X/D X/D X/D X/D X/D

Y/D Y/D Y/D Y/D Y/D

(a)

(b)

U* = 13.9 U* = 17.7 U* = 22.2 U* = 27.3 U* = 32

FIGURE 24. Sphere trajectories in mode IV and Re= 1200 (m∗ = 0.8). Top row in y–z
plane and bottom row in x–z plane at U∗ = 13.9, 17.7, 22.2, 27.3 and 32.
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FIGURE 25. Wake structure observed in mode IV (Re= 1200, m∗= 0.8, l∗= 10 and U∗=
30) visualized with isosurfaces at Q= 0.001. Flow from left to right.

To investigate the nature of the mode IV response, the phase plots and Poincaré
maps were used. Figure 26 shows the variation of phase plots of transverse velocity
versus transverse displacement of the sphere, as the reduced velocity increased, leading
to a transition from mode II to mode IV. At U∗ = 10 (mode II), the phase plot was
a circular orbit representing a highly periodic sphere response. As U∗ increased, the
phase plot gradually became more disordered. This indicates a gradual transition from
mode II to mode IV. Figure 27 shows the Poincaré maps generated by each upward
zero crossing of the normalized sphere displacement for the same U∗ values as in
figure 26. The Poincaré maps are concentrated at the origin for U∗ = 10 and 12
(mode II). Poincaré maps start to spread linearly as U∗ increased up to 18, and beyond
that they spread radially (mode IV). When the points in Poincaré maps are spread
widely, it indicates that the dynamical system is exhibiting a chaotic behaviour. Thus,
the mode IV response observed at higher reduced velocities can be classified as a
chaotic response.

For a static sphere, Brücker (2001) measured broad low frequencies for the
streamwise vortex formation. Therefore, the motion of the sphere seems to originate
from the wake pattern of the sphere even in the mode IV regime. The sphere is likely
to exhibit a chaotic motion rather than a periodic motion at these higher reduced
velocities since the flow speed is comparatively higher. As discussed in the previous
subsection, when the mass ratio increased from 0.8 to 80, mode III appeared before
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FIGURE 26. Phase plots of transverse displacement, Z, for various reduced velocities:
U∗ = 10, 12, 14, 16, 18, 20, 27 and 32, at Re= 1200 and m∗ = 0.8.
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FIGURE 27. Poincaré maps for Z/D, taken from each upward zero crossing of the sphere
transverse displacement for various reduced velocities: U∗= 10, 12, 14, 16, 18, 20, 27 and
32, at Re= 1200 and m∗ = 0.8.

mode IV. Here, we can see that the inertia of the sphere plays a major role in this
low-frequency regime. When the inertia is high, then it tends to show mode III
characteristics before mode IV, but when it is low, it shows mode IV behaviour.

For light spheres, modes III or IV were not observed experimentally due to
experimental limitations (Jauvtis et al. 2001). The maximum U∗ considered in those
experiments was U∗ ≈ 20. Jauvtis et al. observed mode II with a constant amplitude
up to the highest U∗ value they considered. Mode II might be continued even for
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larger U∗ values. Since mode IV is a chaotic motion, it is likely to appear for light
spheres in the turbulent regime.

5. Conclusions
Compared to cylindrical bodies, only a few studies have focused on investigating

the FIV of spherical bodies. Therefore, this numerical study aims to further enhance
knowledge of FIV of tethered spheres, with special attention paid to the different
modes of sphere vibration discovered in previous experimental studies. A new FSI
solver was developed in OpenFOAM to efficiently solve the coupled fluid–structure
system for a tethered sphere. Three sets of simulations were conducted for a tethered
sphere of mass ratio m∗= 0.8 and length ratio l∗= 10 by fixing the Reynolds number
at Re= 500, 1200 and 2000. The sphere response was investigated over the reduced
velocity range U∗ ∈ [3, 32]. The major findings of this study can be summarized as
follows.

The effect of Reynolds number on the mode I and II responses is substantial. The
sphere showed periodic mode I and II VIV responses at each Reynolds number. For
Re= 500, by deviating from the previous experimental studies, the sphere showed a
constant amplitude of ≈ 0.45D over both modes I and II regimes (U∗=[4.5, 12]). The
sphere response amplitude increased as the Reynolds number was increased, especially
in the mode II regime. Moreover, the amplitude response curve showed a clear
transition between modes I and II for both Re= 1200 and 2000. The sphere response
was closer to that seen in previous experimental studies as the Reynolds number was
increased. As expected, the resonance response (mode I) appeared near the normalized
velocity (U∗/f ∗)St = 1, while mode II appeared in the range (U∗/f ∗)St ∈ [1.4, 2.4]
for each Reynolds number, which is consistent with the (experimental) findings of
Govardhan & Williamson (2005). The current predictions and the results of Rajamuni
et al. (2018a) for their branch A at Re = 300 and 800, observed with an elastically
mounted sphere, led to the conclusion that the sphere response amplitude increases
globally with the Reynolds number over the range Re= [300, 2000] in modes I and
II regimes. Moreover, the effect of Reynolds number is greater on mode II than on
mode I. The mode I response appears more robust than the mode II response, as it
corresponds to the natural resonance. Two-sided hairpin loops were observed in the
wake of these two modes. Moreover, two loops were shed on opposite sides of the
sphere per oscillation cycle. However, for Re= 1200 and 2000, in mode II multiple
loops were observed over an oscillation cycle.

The mode III response is excited under the condition of high inertia of the system.
At each Reynolds number, as the reduced velocity was increased, the sphere switched
to a mode IV type irregular response immediately after the periodic mode II response
without passing through an intervening mode III regime. In previous experimental
studies, mode III has only been found for heavy spheres. Therefore, a few simulations
were conducted by increasing the mass ratio of the sphere to m∗ = 80 at Re= 1200,
for further investigation. At U∗ = 30, on increasing the mass ratio from 0.8 to 80,
the random motion of the sphere became fairly periodic, consistent with a mode III
response. In the wake, multiple vortex loops were observed per oscillation cycle as
seen in previous experiments. Govardhan & Williamson (2005) argued that mode III
is a movement-induced vibration that is excited as a result of the initial perturbation
of the sphere occurring due to its wake pattern. We found that the sphere can only
have a sustainable periodic motion if it has enough inertia, in this low-frequency range.
Finally, mode III can be identified as an unstable vibration state that is only excited
for large-mass-ratio spheres.
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The sphere motion is chaotic in mode IV. A tethered sphere of m∗ = 0.8 showed
mode IV oscillations for U∗ > 14 for Re = 500 and for U∗ > 16 for the other two
Reynolds numbers. The motion of the sphere was highly irregular in this mode.
Interestingly, the sphere motion was mainly in the transverse direction. However, its
motion was non-negligible in the other two directions. The r.m.s of the transverse
amplitude showed an increasing and then levelling-off trend, as the reduced velocity
was increased over the mode IV regime. For m∗ = 80, mode IV was found to occur
after mode III for very large reduced velocities (U∗ = 150), consistent with the
observations of Jauvtis et al. (2001). The onset of mode IV shifts to higher U∗
values as the mass ratio is increased. The chaotic nature of the motion in mode IV is
presumably a result of the considerable difference between the wake forcing frequency
and the natural system frequency.
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Appendix A
A.1. Convergence studies

This appendix provides further evidence of the convergence of predictions presented
in the paper, acknowledging that flux-corrected schemes such as the NVD GammaV
convection scheme Jasak et al. (1999) used for this study are more often associated
with compressible flow modelling specifically to prevent oscillations at flow
discontinuities. While it is true that this scheme is a mixture of the upwind and
central-difference schemes, as the grid is refined, and since there are no discontinuities
in incompressible flow, the approximation must revert to second-order accuracy.
Indeed, the resolution studies show that the predictions are not sensitive to grid
resolution, presumably as the predicted flows approach second-order accuracy, at least
in the vicinity of the sphere and the near wake (which presumably determine the
amplitude response, sphere forcing and the overall wake structure).

However, to provide further confidence in the predictions, further testing was
conducted. Overall, each of these tests using alternative approaches produces
predictions in close agreement with those presented in this paper. A summary of
these extra validation studies is given below.

A.1.1. Comparison with simulations using central differences within OpenFOAM
For the highest-Reynolds-number case investigated of Re = 2000, FIV simulations

using the central-difference scheme for the convective terms, based on the same grid
used for the simulations presented in this paper, result in divergence of the evolving
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1.0
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GammaV
Central difference

FIGURE 28. Comparison of the sphere response amplitude variation with reduced velocity
for Re= 2000 showing predictions using the GammaV and central-difference schemes for
the convection terms.

Re= 500 Re= 1000

Scheme used for convection term Cd Cl St Cd St1 St2

GammaV 0.5 (present) 0.57 0.06 0.18 0.49 0.2 0.32
Central difference 0.57 0.06 0.18 0.48 0.19 0.34

TABLE 4. Comparison of computed time-averaged drag coefficient, Cd, time-averaged lift
coefficient, Cl, and Strouhal number, St, on flow past a sphere at Re = 500 and 1000,
employing GammaV and central-difference schemes for the convection term.

flow. The divergence occurs at the upstream boundary corners of the sphere refinement
region, where grid resolution rapidly reduces in the upstream and radial directions. It
is important to note that the flow velocity close to this interface is essentially the
background flow velocity. Potential flow theory, a good approximation to the flow
upstream of a bluff body, gives the fractional deviation from uniform background flow
to vary as (R/r)3, with r the distance from the centre of the sphere (see e.g. White
2011). The offending points are approximately 7R from the sphere centre, giving a
deviation from background flow of less than 0.5 %! Modifying the grid to avoid the
rapid expansion at the boundary of the near-sphere refinement zone, while retaining
the same grid resolution near the sphere and in the wake, resolves this problem. Of
course, simulations using the GammaV scheme avoid any unphysical oscillations near
these points on the original grid.

As an initial check, central-difference simulations were undertaken with the
modified grid for a stationary sphere, to compare predictions of the lift and drag
coefficients, and Strouhal number. The comparison is shown in table 4 for Re= 500
and 1000. For Re= 500, there is no difference in these parameters to two significant
figures, and at Re= 1000, the differences are small and probably mostly attributable
to the chaotic nature of the wake.

A more pertinent test involves a comparison of VIV predictions for the highest-
Reynolds-number case studied of Re = 2000. Figure 28 shows amplitude response
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1.0

0.8

0.6

0.4

0.2

0 5 10 15

A*

U*
20 25 30

Re = 1200 - spectral/spectral-element
Re = 1200 - openFOAM (GammaV)

FIGURE 29. Comparison of the sphere response amplitude at Re = 1200, comparing
predictions from OpenFOAM (GammaV) and spectral/spectral-element codes.

Interpolation scheme A∗ Cd St f ∗ A∗ Cd St f ∗

U∗ = 6 U∗ = 9

GammaV 0.57 0.76 0.16 0.97 0.88 0.85 0.12 1.04
Central difference 0.54 0.74 0.16 0.97 0.88 0.86 0.12 1.05

U∗ = 10 U∗ = 12

GammaV 0.92 0.83 0.11 1.11 0.84 0.67 0.10 1.06
Central difference 0.91 0.82 0.11 1.12 0.83 0.69 0.10 1.09

U∗ = 16

GammaV 0.61 0.53 0.11 1.34
Central difference 0.61 0.54 0.08 1.45

TABLE 5. Comparison of computed sphere response amplitude, A∗, time-averaged drag
coefficient, Cd, Strouhal number, St, and frequency ratio, f ∗, on FIV of a sphere at Re=
2000 and U∗= 6, 9, 10, 12 and 16 using the GammaV and central-difference schemes for
the convection term.

predictions from the central-difference scheme overlaid on the GammaV response
curve. Clearly, the match is very good, suggesting that the GammaV scheme is
essentially acting as a second-order-accurate scheme, at least in the vicinity of the
sphere and near wake. A more detailed comparison of other parameters is provided
in table 5, again showing a good match between predictions based on the two
different schemes. At higher U∗, where the response becomes less regular, some
minor differences arise, but again this may be partially due to too short sampling
time.

A.1.2. Comparison with predictions from a spectral/spectral-element code
A further validation was undertaken based on simulations using an independent,

previously validated, spectral/spectral-element code (e.g. Thompson, Leweke &
Provansal 2001; Sheard, Thompson & Hourigan 2003, 2004; Thompson et al. 2006;
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Stewart et al. 2010; Rao et al. 2012). This has been used previously for tethered
sphere simulations of a neutrally buoyant sphere (Lee et al. 2013). These simulations
were undertaken at Re = 1200 using a fine mesh based on high-order interpolating
polynomials. Overall the mesh consisted of 2700 elements in r–z planes and 96
Fourier planes in the azimuthal direction. Previous studies and further tests indicated
that tensor-product fifth-order interpolating polynomials within macro-elements,
together with the 96 azimuthal Fourier planes, were sufficient to well resolve the
flow. This approach uses no stabilization methods. As each simulation is relatively
expensive, only selected simulations were undertaken to capture the main modes
and transitions. The amplitude response predictions are shown in figure 29, overlaid
on the response curve obtained using the GammaV scheme of OpenFOAM. Once
again, the match is very good, providing further confidence in the accuracy of the
predictions presented in this paper. Also, this study also provides confidence in the
implementation of the fluid–structure interaction model within OpenFOAM.
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