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The influence of a horizontal wall on the evolution of the long-wave instability
in equal strength counter-rotating vortex pairs is studied with direct numerical
simulation. The two vortices descend under mutual induction and interact with a
ground plane, as would aircraft trailing vortices in ground effect. Both the linear and
nonlinear development of the pair is studied for three initial heights above the wall,
representative of three modes of interaction identified by experiment. A study of two
vortex core sizes over a range of Reynolds numbers (1000 6 Re 6 2500) is used to
verify parameter independence. The vortex system undergoes complex topological
changes in the presence of a wall, with the separation of wall generated vorticity
into hairpin-like vortex tongues and axial flow development in the primary pair. The
secondary structures are rotated and stretched around the primary vortices, strongly
influencing the resultant flow evolution and are comparable with those observed for
oblique ring–wall interaction. Of the three modes, the small-amplitude mode shows
the formation of four principal tongues per long wavelength of the Crow instability,
with the secondary vortex remaining connected. The large-amplitude mode undergoes
a re-connective process to form two non-planar secondary vortex structures per
wavelength, and a simulation of the large ring mode in its first formation develops
six tongues per wavelength. These secondary structures ‘rebound’ from the wall and
interact at the symmetry plane prior to dissipation, governing the bending, stretching
and trajectory of the primary vortex pair.

Key words: vortex dynamics, vortex instability, vortex interactions

1. Introduction
Vortex pairs have been an area of significant interest as a result of their importance

in both the study of fundamental fluid mechanics and applied engineering. With
modern advances in numerical and experimental methods uncovering the significance
of coherent structures in turbulent flows (Hussain 1986; Fiedler 1988), the dynamics
and stability of vortex interaction are evidently integral to not only large-scale vortex
systems, but to all flow scales down to the mechanisms governing development

† Email address for correspondence: daniel.dehtyriov@monash.edu
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of micro-scale turbulence. In particular, parallel vortex pairs provide an elementary
vortex interaction configuration further motivated by their relevance to aircraft wakes.

The far field wake behind a lifting wing is characterised by the persistence of
two strong trailing counter-rotating vortices after the initial roll-up of the near
wake (for details, see Spalart (1998)). These counter-rotating vortex pairs control
the motion of exhaust gases at cruise conditions (Gerz & Ehret 1997) and pose a
significant hazard to other aircraft at take-off and landing due to the induced rolling
moment. As the persistence of trailing vortices behind large aircraft may constitute
a hazard to following aircraft, an understanding of the dynamics and instabilities of
this configuration of vortices is critically important to safety (Rossow 1999; Gerz,
Holzäpfel & Darracq 2002). Specifically, the interaction between a vortex pair and
a ground plane occurs during the approach and landing of aircraft, for which the
finite-wing vortices interact with the runway. This considerable practical interest
provides the underlying reason for the large volume of literature on attempting to
understand and ultimately accelerate the decay of the wake.

Equally strong (Γ = Γ1 = −Γ2, where Γ is the circulation) counter-rotating
vortex pairs, separated by distance b, translate with a constant velocity value of
(Γ /2πb) normal to the plane on which they lie (Lamb 1932) and undergo two
primary three-dimensional instabilities. The instabilities may be characterised by
their respective wavelengths. The growth of both the long- and short-wavelength
instabilities can be induced in a single stable vortex by the imposition of an external
strain field (Moore & Saffman 1971). The presence of the parallel vortex induces
such a field, enabling the cooperative growth of the instabilities to develop in both
vortices (Leweke & Williamson 1998).

The long-wavelength instability involves sinusoidally radial displacement of vortices
without influence on their core structure. It can be observed behind aircraft where
the wake vortices are visualised by condensation (Jacob 1995), resulting in long
axially sinusoidal wavelengths relative to the initial vortex separation distance. Crow
(1970), who undertook the first theoretical study of this instability, showed that
counter-rotating vortex pairs mutually interact, leading to the amplification of low
wavenumber perturbations and resulting in the deformation of the vortex pair into
axially periodic long-wavelength structures. By using a vortex filament model, Crow
found that the instability mode is symmetric and sinusoidal, and initially confined
to planes inclined at close to 45◦ to the plane on which both vortices initially
lie. The dynamics of this eponymous ‘Crow’ instability arises from a balancing of
three plane rotation mechanisms resulting in radial stretching of the perturbation.
Kelvin (1880) illustrated the self-induced rotation of the instability plane of a single
sinusoidally perturbed vortex. The introduction of the second vortex mutually induces
counter-rotation and radial stretching on the plane where the perturbation grows. When
the plane rotation effects cancel, the wave is held at a constant angle with a positive
component of radial strain, leading to exponential growth in amplitude. To tackle
the issue of the singularity of the vortex filament model, Crow introduced a ‘cutoff’
technique, which involves integrating the Biot–Savart law for the self-induced motion
of the vortex filament up to a finite region near the vortex core. The choice of the
cutoff distance was based on solutions by Thompson (1910) for both a vortex ring and
rotating sinusoid with constant vorticity in the core. Bliss (1970) and Widnall, Bliss
& Zalay (1971) extended the stability analysis by asymptotic matching of the inner
(close to the vortex core) solution of the vorticity conservation equation and the outer
filament based Biot–Savart law. This allowed for general vortex velocity profiles with
axial flow to be considered, and an analytical expression for the appropriate cutoff
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distance to be used in Crow’s approach was derived. This expression was based on
a Batchelor vortex of radius a and axial flow parameter W. The effects of vorticity
distributions on the stability of vortex pairs was further studied by Moore & Saffman
(1973) and Klein, Majda & Damodaran (1995).

The evolution of the Crow instability in parallel counter-rotating vortex pairs
first results in the distortion of the initial sinusoidal deformation at large instability
amplitudes and results in the periodic connection of the cores, eventually breaking
down into a series of periodic vortex rings (Scorer & Davenport 1970; Garten et al.
2001). As the elliptic rings descend in the fluid, the major and minor axes of the
ellipse switch, and the vortices reconnect for a second time, as shown experimentally
by Leweke & Williamson (2011). Moore & Saffman (1972) integrated the nonlinear
system until the vortex pair was almost touching and found that the instability
continues to grow to large amplitudes in close agreement with the linear theory.
Crouch (1997) and Fabre, Jacquin & Loof (2002) applied and extended the model
to multiple vortices, and studied the aircraft wake model composed of both the
outer wing-tip vortex pair and an inner vortex pair rotating in the opposite direction,
generated from the flaps or a horizontal tail. Optimal forcing of the Crow mode for
accelerating the growth rate has been studied theoretically by Brion, Sipp & Jacquin
(2007), with further numerical studies (Johnson, Brion & Jacquin 2016) finding the
growth rate increasing approximately twofold with optimal linear forcing. Crouch
(2005) found practical methods of both active and passive control for accelerating the
long-wave instability.

The elliptic instability is characterised by short-wavelength perturbations which
develop inside and modify the internal structure of the vortex cores. As the axial
wavelength of the instability is of the same order as the core size of the vortices,
the vortex filament approach is incapable of capturing the physics of this mode.
Visualisations of these instabilities (Leweke & Williamson 1998) were compared to
the theoretical elliptic instability (Moore & Saffman 1975; Tsai & Widnall 1976) of
a vortex ring, providing the analytical framework for the instability mode. It was
found that the elliptic instability results from interaction between the perturbation
waves (Kelvin modes) and strain modification of the base flow due to the strain
field of the other vortex (Roy et al. 2011). The external strain produces flow with
elliptical streamlines in the vortex core, which is unstable to three-dimensional
perturbations. The instability is present in a number of flow configurations reviewed
by Kerswell (2002). Lacaze, Ryan & Le Dizàs (2007) and Fabre, Sipp & Jacquin
(2006) determined the linear modes of Lamb–Oseen vortices following the work of
Kelvin (1880) on linear modes of Rankine vortices. The elliptic instability is expected
to influence the dynamics of multiple vortices generated by aircraft wings. Leweke
& Williamson (1998) showed that the addition of the short-wave perturbations to the
Crow instability increased the growth rate by ∼20 %. Furthermore, it was shown that
the elliptic instability breaks the symmetry of the long-wave mode, and the presence
of both modes results in the development of a series of secondary vortex pairs during
the nonlinear growth phase.

The presence of a ground plane in the vicinity of the vortex pair substantially alters
the dynamics and stability characteristics of the primary vortices, and introduces the
formation of secondary vorticity originating from the boundary layer formed between
the primary vortices and the no-slip surface. It was shown by Lamb (1932) that
counter-rotating inviscid vortex pairs move apart along hyperbolic trajectories at a
free-slip wall. For a no-slip wall, however, the primary vortices appear to ‘rebound’
from the ground plane, which was initially shown experimentally by Dee & Nicholas
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(1968). Harvey & Perry (1971) found that the boundary layer formed has vorticity
of sign opposite to that of the approaching primary vortex, resulting in a significant
change to the evolution of the subsequent primary vortex dynamics. Peace & Riley
(1983) showed numerically that the secondary vorticity rolls up to detach from
the wall to form a discrete secondary vortex as a result of the adverse pressure
gradient. The secondary vortices likewise undergo a displacement-type instability
(Luton & Ragab 1997), resulting in bending, stretching and ultimately wrapping
around the primary vortex. The generation of boundary vorticity induces velocity
on the primary vortices, which acts away from the ground plane causing the initial
‘rebound’. Saffman (1991) derived the approximate trajectory for finite core vortices
approaching a free-slip wall in a viscous fluid, observing some rebound effect. Studies
of transient energy growth in an isolated vortex/wall system indicated weakening of
the rebound effect under optimal perturbation (Stuart, Mao & Gan 2016). Further
rebounds occurring after the initial secondary vortex roll-up were observed due to
orbiting of the secondary vortices around the primary vortex (Orlandi 1990; Kramer,
Clercx & van Heijst 2007). Similar effects of the generated secondary vorticity have
been observed in the impingement of vortex rings on walls (Walker et al. 1987;
Orlandi & Verzicco 1993), where multiple rings are ejected from the strong boundary
layer–vortex interaction. Swearingen, Crouch & Handler (1995) further observed the
roll-up of the boundary layer into secondary rings due to vortex wall–ring interaction,
and showed the instability of the secondary rings to long-wavelength modes.

The dynamics of the instability of a vortex pair above a wall was studied
experimentally by Asselin & Williamson (2017) who observed three modes of the
vortex pair–wall interaction, dependent on the initial height of the vortices above
the ground plane. The experimental results suggest that the amplitude of the Crow
instability is primarily responsible for dictating the vortex pair–wall dynamics. Once
the vortices begin to interact with the wall, the dynamics of the strong nonlinear
wall effects dominates the long-wavelength instability and hence dictates the further
evolution of the flow. As the perturbed vortices approach the wall, the section of
the vortex closest to the wall experiences locally higher pressure, driving the flow
away axially. This is comparable to the experimental and numerical results of Orlandi
& Verzicco (1993) and Swearingen et al. (1995). Lim (1989) noticed the difference
in rates of vortex stretching due to the variation in distance from the wall of an
obliquely impinging ring. Identically to the perturbed vortex, this resulted in strong
pressure gradients due to vorticity cancellation, which drive flow away from the point
of first contact and can ultimately cause vortex ring collapse. Lim (1989) further
observed the deformation of the ring as it travelled towards the wall, with the core
diameter of the ring varying in size. Couch & Krueger (2011) experimentally detailed
the generation and evolution of primary and secondary vorticity on oblique ring–wall
impingement, observing the ‘wrapping’ of the secondary vorticity about the primary
vortex and the formation and the asymmetry of the flow. A numerical study by
Cheng, Lou & Luo (2010) likewise detailed the oblique approach of a vortex ring to
a no-slip wall, quantifying the differences in flow dynamics with change in Reynolds
number. It was found that at high Reynolds numbers, secondary and even tertiary
rings were generated upon interaction, with low Reynolds numbers leading to the
dissipation of the secondary rings prior to full development. The study observed
complex topological changes, with hairpin-like vortical structures forming through the
interaction. Bourne, Wahono & Ooi (2017) numerically supported the development
of the hairpin structures in vortex ring–wall interactions due to the asymmetric
stretching of the primary vortex and secondary vortex interaction. The volume of
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literature concerned with oblique ring–wall impingement shows remarkable similarity
to the study of the vortex pair impingement.

Asselin & Williamson (2017) observed that for initial heights below a critical
value, the Crow instability does not fully develop, and the growth of the instability is
inhibited by the wall. For small heights, the secondary vortices interacted with each
other and it was observed that vertically oriented rings formed. For larger heights
below the critical height, the increased amplitude of the Crow instability resulted
in higher axial pressure gradients driving strong axial flows. The secondary vortices
only interacted with their respective primary vortices, showing the formation of two
horizontal rings per wavelength which rebound from the wall. Finally, for heights well
above the critical height, where the Crow instability develops enough to form large
horizontal rings, the vortex pair forms non-planar rotating rings prior to interacting
with the ground. The orientation of these rings prior to wall impingement is shown to
strongly influence the complex dynamics that follows, and can be directly compared
to studies relating vortex ring/ground plane impingement.

It is clear that despite the extensive experimental study of vortex pair–wall
interactions by Asselin & Williamson (2017), the vortex evolution is complex and
much remains to understand. This paper seeks to complement the experimental work
with numerical simulation, to provide further understanding of the viscous interactions
between a pair of counter-rotating vortices and a wall. The direct numerical simulation
(DNS) study predictions are compared to the experimental results and a detailed
analysis of the flow physics; in particular, the inhibition of the Crow instability and
the development of the ring modes follows. Insight into the development of both the
circulation and axial flow in the vortex systems is presented and is central to the
understanding of the dynamics.

Specifically, this study seeks to add to the current body of literature in the following
way:

(i) By quantifying the evolution and break-down of three-dimensional viscous vortex
pairs under long-wave instability.

(a) Comparison of numerical (DNS) results to experimental results.

(b) Quantification of the understanding of the vortex pair evolution.

(c) Visualisation of the numerical data to draw new inferences to the physics of
the primary and secondary vortex development and interaction.

(d) Consideration of the impact of varying the Reynolds number, vortex core
size and perturbation amplitude on the dynamics through DNS studies.

The structure of this article is as follows: first the problem definition and numerical
approach are discussed in § 2; then the results from the direct numerical simulation
concerning the evolution of the various modes of wall-bounded interaction follow in
§ 3; and the influence of the Reynolds number and the vortex core size is discussed
in § 4. The article ends with conclusions in § 5.

2. Methodology

This section details the problems under investigation, defines the relevant parameters
and discusses the computational method used to solve the governing equations.
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FIGURE 1. A schematic showing the key parameters governing the system and the
coordinate system employed for the numerical study. The view in the x–y plane illustrates
the planar projection of the vortex cores with both the amplitude and angle of the
instability shown.

2.1. Objective
This investigation considers the evolution of a pair of superimposed counter-rotating
Lamb–Oseen-type vortices above a no-slip wall as shown in figure 1. The vortices
are separated by an initial distance b0 and have characteristic core radius a. In two
dimensions, the velocity fields of the vortices individually satisfy

vθ(r)=
Γ

2πr

(
1− exp

(
−

r2

a2

))
, (2.1)

where Γ is the circulation, and r the radial distance from the vortex core. Note that
the core radius a is a function of time, and increases due to diffusion. In the case
of an unbounded vortex, the evolution of the characteristic radius was shown by
Batchelor (1967) to be

a=
√

a2
0 + 4νt, (2.2)

where a0 is the initial characteristic radius and ν is the kinematic viscosity of the fluid.
In the case of a vortex interacting with external vorticity, as is the case here where
vorticity is generated on the no-slip wall, this equation provides an estimate to the
evolution of the characteristic radius.

The parameters governing the evolution of an unbounded Lamb–Oseen vortex are
hence the circulation Γ and the initial Reynolds number defined by the circulation
through Re = Γ0/ν, where Γ0 is the initial circulation. In the case of symmetric,
parallel and unbounded counter-rotating vortices, both vortices translate under mutual
induction in a straight line at constant speed U = Γ /(2πb) normal to the plane on
which the vortices lie. The time t can thus be non-dimensionalised by the time taken
for the vortex pair to descend a unit distance given the initial vortex spacing to define
a non-dimensional time as

τ = t
Γ0

2πb2
0
. (2.3)
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It is important to note that the implicit length scale for the Reynolds number as
defined in this article is based on the vortex spacing b. This is consistent with the
non-dimensionalisation of the time τ and instability amplitude A/b0 in the literature.
If one is to consider the Reynolds number based on a natural velocity scale for a
single vortex as Ua=Γ0/a0, one finds that the Reynolds number would be scaled by a
factor of a0/b0 i.e. Rea= (a0/b0)Reb. The experimental study of Asselin & Williamson
(2017) quotes Rea, but numerical studies typically assume Reb. For consistency and
simplicity, this article defines Re=Reb, and Rea is used to distinguish the two scalings
when discussing the experimental results.

This study seeks to provide further insight and analysis of the three modes of
interaction identified in the experimental results of Asselin & Williamson (2017). As
such, similar parameters were chosen, allowing both qualitative and quantitative
comparisons to be drawn from the experimental results. It was found that the
numerical results did not match the experimental results exactly for the parameters
quoted in the experimental study. Upon further investigation, it was noted that the
parameters were determined assuming reduced dependence of the measured azimuthal
velocity about the centre point between vortices. A least squares fit to the data
points suggested that the Reynolds number would be Rea = 732 and a0/b0 = 0.297.
However it is clear that the data near the centre point were ‘noisy’ and cannot be
precisely modelled by the superposition of two Lamb–Oseen vortices. Furthermore,
it is noted that the very small initial instability amplitude is subject to experimental
error which is magnified over the exponential growth in the linear region. For
this reason, a number of Reynolds number studies were necessary to investigate
a parameter space for comparison to the experimental system (for details see § 4).
A selection of Reynolds numbers and core sizes were hence considered, namely
Re= (1000, 1500, 2000, 2500) and a0/b0 = (0.4, 0.3, 0.23) to quantify variations
in these parameters on the dynamics. The focus of this article is on a0/b0 = 0.23,
which was chosen to be identical to the work of Leweke & Williamson (2011), and
at Re = 2500, recovers and explains the three modes of interaction identified by
experiment.

A key governing parameter of the wall-bounded system was shown to be
the amplitude of the long-wavelength perturbation to the initial vortex spacing
A/b0. To capture the modes of the vortex pair–wall interaction, initial heights of
h0/b0 = 3.5, 5.0, 7.5 and 10.0 were examined, where h0 is the initial distance of the
vortex cores above the wall.

To study the instability of the vortex pair–wall interaction, an initial sinusoidal
(displacement) perturbation is applied to the vortex cores at a ±45◦ angle to the
plane on which the vortices lie. After some experimentation, the initial amplitude of
the instability for Re= 1000 was set to A0/b0= 0.1, for Re= 1500 and for Re= 2000
to A0/b0 = 0.05 and for Re = 2500 to A0/b0 = 0.01, with an initial wavelength of
λ = 5.4 in all cases. These parameters were determined a posteriori by ensuring
that for a given initial height h0/b0, the amplitude of the perturbation b0 above the
wall matches the range observed in experimental visualisations. It is noted that the
general evolution is not strongly dependent on the choice of initial amplitude A0/b0,
but rather the amplitude of the instability upon strong wall interaction A/b0. The
evolution of the instability out of wall effect for small perturbations is approximated
by linear theory (Widnall et al. 1971) and so long as the parameter A/b0 is within
the range for a given mode of vortex pair–wall interaction (see § 3), the initial
amplitude does not hence significantly alter the dynamics. This is in accordance with
the experimental results suggesting that A/b0 is the primary governing parameter, and
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Re h0/b0 a0/b0 A0/b0 A/b0

Primary study 2500 5.0, 7.5, 10.0 0.23 0.01 0.1371, 0.4731, >0.5 (Rings)

Additional studies 1000 3.5, 5.0 0.4 0.1 0.2541, 0.4032
discussed 1500, 2000 3.5 0.4 0.05 0.1285, 0.1246

2500 5.0 0.3, 0.4 0.01 0.0911, 0.0415

TABLE 1. A summary of the major control parameters of the different cases studied. The
primary study is the focus of the detailed discussion in § 3, and the additional studies are
overviewed in § 4 to show that the results presented are not specific to a single choice of
parameters. All of the studies are for λ= 5.4.

allows for comparisons to be drawn between the Reynolds numbers and core sizes
despite the differences in the initial amplitude (see § 4).

A schematic of the initial set-up with relevant parameters is shown in figure 1, and
a table containing all of the relevant simulation controls is shown in table 1.

2.2. Numerical formulation
The motion of an incompressible fluid is governed by the incompressible Navier–
Stokes equations, which in non-dimensional form are expressed as

∇ · u= 0, (2.4)
∂u
∂τ
=−u · ∇u−∇p+

2π

Re
∇

2u, (2.5)

where u is the velocity scaled by U0 = Γ0/(2πb0), τ is the time scaled by 2πb2
0/Γ0

and p is the kinematic pressure scaled by U2
0 . With the origin of a Cartesian coordinate

system positioned at the midpoint of the two unperturbed vortex cores, the initial
velocity field u0 is set to be the superposition of two perturbed Lamb–Oseen vortices
with cores located at Rp=±b0/2 ex+∆, where Rp is the position vector of the vortex
cores taken from the origin. The initial perturbation, ∆, is set to be a sinusoidal wave
with amplitude A0 and wavelength λ such that

∆= (A0 cos θ) sin
(

2π

λ
z
)

ex + (A0 sin θ) sin
(

2π

λ
z
)

ey, (2.6)

where θ is the angle to the plane of the pair. The long-wave instability was shown by
Crow (1970) to occur at an angle of approximately θ = 45◦ to the plane of the pair,
which is used to set up the initial three-dimensional velocity field.

The domain considered is a cuboid with boundaries located at −20b0 6 x 6 20b0,
−h06 y616b0, 06 z6λ. The x and upper y domain bounds are set to be large enough
such that the velocity remains close to that determined by the initial vortex dipole
(extending the domain shows this to be the case). Axially periodic conditions for the
velocity and pressure are applied at axial boundaries. A no-slip boundary condition is
applied the wall and the velocities on top and lateral boundaries are prescribed by the
initial velocity field of the vortex dipole.

Both the vorticity components and the Q-criterion, where Q is the second invariant
of ∇u, are used as aids to visualise the flow field and to identify vortex structures.

Vortex strength (or circulation), Γ , is related to the vorticity by Γ =
∫∫

S ω · dS, with
the integration taken over an area containing the vorticity ω. This is quantitatively
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Vortex pair wall interaction 884 A36-9

h0/b0 Nx Ny Fourier planes

3.5 69 39 144
5.0 69 43 144
7.5 69 61 144
10.0 69 65 144

TABLE 2. The number of macro-elements and Fourier planes used for the DNS study. This
table does not include the internal spectral-element nodes, for which a convergence study
(see table 3) is employed to ensure a grid independent solution.

calculated in this study by integrating around contours at 1 % of the maximum
vorticity on planes oriented normal to the axial direction.

The Q-criterion requires a connected fluid region with a positive second invariant of
∇u, such that Q> 0 (Hunt, Wray & Moin 1988). This represents regions in the flow
where rotation dominates strain. Visualisation of vortex structures with the flow are
obtained by calculating the Q-field and plotting isosurfaces for Q= 0.001. Minimum
pressures within the Q-structures at the peak (z = λ/4), trough (z = 3λ/4) and mid
(z= λ/2) planes are computed to study axial flow in the vortex pairs.

Vortex core locations are determined using the eigenmode based algorithm in
Haimes (2000). The issue with this approach is that the algorithm also locates
patterns of strained flow, as in the boundary layer generated on the no-slip wall. The
Q-criterion is hence used to identify any spurious vortex cores.

The amplitude of the long-wavelength displacement type instability and the
orientation of the plane on which it lies is found by planar projection of the vortex
cores onto the z plane, and geometrically deducing the angle and amplitude. Note
that the displacement of the vortex line is taken to be indicative of the amplitude of
the instability, and not the exponential growth of the velocity perturbations.

2.3. Numerical method
A spectral-element method was employed to spatially discretise equations (2.4) and
(2.5) in the cross-plane of the vortex pair. Lagrangian tensor-product polynomial
basis functions are used within each element, using the fractional step approach
discussed in Thompson et al. (2006). The spatial polynomial interpolant functions,
of which the polynomial degree order can be selected at run time to modify spatial
resolution, are based on the quadrature points for Gauss–Legendre–Lobatto quadrature.
The DNS technique further employs a Fourier expansion in the axial (z) direction.
Because the pressure and diffusion substeps are linear, the equation for each Fourier
mode decouple, allowing these steps to proceed in parallel. The advection step
uses an Adams–Bashforth approach in real space on a point by point basis. The
three-dimensional variant and the method of parallelisation is described in more
detail in Karniadakis & Triantafyllou (1992).

High grid resolution was used for simulating the vortex pair–wall interaction.
As indicated above, beyond the distribution of macro-elements within the domain
(table 2), spatial resolution is further controlled through selection of the degree
of the polynomial shape functions imposed on the macro-elements. For each
grid investigated, the Lagrangian polynomial interpolant order was increased until
convergence was achieved. The initial convergence criterion used was based on the
L2 norm of the velocity field, L2 =

∫
Ω
|u| dΩ at τ = 20, which was chosen as an
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0

FIGURE 2. An example of the grid compression used for the DNS study for the case
with h0/b0 = 3.5. The grid is highly resolved in the region of vortex descent and near
the no-slip wall. A close-up view of the compressed region is also illustrated. Only the
macro-elements are shown with the DNS study employing 36 spectral nodes per macro-
element.

appropriate scalar value that reflects the evolution of the system after the occurrence
of wall interaction for all initial heights. The DNS predictions were considered
effectively grid independent once the difference of the L2 norm between successive
grids fell to less than 2 %.

Each grid tested was highly refined in the vicinity of the vortex pair for the entire
integration time. Figure 2 shows a typical macro grid used for these studies, showing
significant mesh compression in the region corresponding to vortex descent and near
the ground plane.

In the spanwise direction, 144 Fourier modes were used to resolve the flow for all
grids. This was decided on as the distance between spectral nodes in the region of
mesh compression of the x and y planes is approximately the same as the distance
between Fourier planes in the z direction. A convergence study at 192 Fourier planes
for p= 6 was considered, with the largest percentage error being ∼ 0.18 % for h0/b0=

10.0; 144 planes were hence considered sufficient for convergence and used for all
studies.

A small time step of δτ = 0.0025 was used for all simulations, i.e. 400 time steps
per convective time. As shown in table 3, the percentage difference in the L2 norm
at τ = 20 for polynomial orders 6 and 7 is a maximum of 1.6 % for the largest
initial height h0/b0 = 10.0. For all other heights, the percentage difference is of the
order of 0.1 %. With the numerical simulations revealing the production of intricate
vortical structures of smaller and smaller scales with time (see § 3), a more physical
a posteriori validation study was conducted to ensure a physical solution. In the case
of no-slip walls, periodic boundary conditions, and lateral boundaries far from the
vortices, as is the case here, it can be shown that the decay of the global kinetic
energy in the numerical domain is proportional to the global enstrophy (Doering &
Gibbon 1995)

dEk

dt
=−

1
Re

Eω, (2.7)
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0 2 4 6 8 10

dE
k/

dt
, (

-
1/

Re
)E

ø

†
12 14 16 18

0

-0.005

-0.010

-0.015

-0.020

FIGURE 3. Validation study indicating that equation (2.7) is satisfied for all time steps
of the solution for all three initial heights at Re = 2500. The lines (—), (- - -) and
(· · ·) correspond to the decay of global kinetic energy and the symbols (�), (©) and
(♦) correspond to the sign inverted global enstrophy scaled by the kinematic viscosity for
h0/b0 = 5, 7.5 and 10 respectively. For visibility, the symbols are presented at intervals
of δτ = 5/π; however, the largest error is no larger than 2.0 % for all initial heights and
τ > 0.4, once the initial velocity field evolves to satisfy the governing equations.

h0/b0 p= 5 p= 6 p= 7 Fourier plane Difference
study L2(p= 7)− L2(p= 6)

3.5 8.955535 8.945168 8.945809 8.955455 0.000641
5.0 9.836719 9.821433 9.823264 9.821295 0.001831
7.5 10.49567 10.38917 10.39877 10.39708 0.00960
10.0 8.099781 7.639787 7.767928 7.653211 0.128141

TABLE 3. Convergence study showing the L2 norm of velocity at τ = 20 for various
spectral polynomial orders p for different initial heights. A polynomial order of p= 6 is
taken to be sufficiently converged for all studies. The Fourier plane convergence study is
for 192 Fourier planes, with all other studies conducted with 144 Fourier planes.

where the global kinetic energy is given by Ek=
∫
Ω

1
2 |u|

2 dΩ and the global enstrophy
by Eω =

∫
Ω
|ω|2 dΩ . Figure 3 illustrates that equation (2.7) is satisfied for the various

numerical simulations for p = 6 and 144 Fourier planes to a maximum error of
2 % with the exception of small times where the initially imposed Lamb–Oseen
velocity field rapidly changes to satisfy the governing equations. The results of the
direct numerical simulations can hence be considered converged and are presented
for a polynomial order of 6. As the largest Reynolds number of Re = 2500 was
employed for this resolution study, predictions for all lower Reynolds numbers are
also considered converged for p= 6.

3. Results
This section discusses the numerical solution to the vortex pair above a no-slip wall.

Three modes of interaction were observed by experimental visualisations (Asselin &
Williamson 2017) depending on the initial height of the vortex pair above the wall.
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As will be shown, a defining insight of the numerical results is that the observation
of Asselin & Williamson (2017) that vortex tongues reconnect to form vertical or
horizontal rings is not supported by the DNS; here the modes are hence referred
to as the ‘small-amplitude mode’, ‘large-amplitude mode’ and ‘large ring mode’,
respectively.

This section is organised as follows: first, the evolution of the vortex strength
(circulation) for the three modes is discussed, with the parallels and differences in
the dynamics outlined. Second, a thorough discussion of the three modes follows,
detailing the formation and evolution of secondary structures, the connection
between the axial flow in the primary vortices to the dynamics and the long-
term evolution of the flow to dissipation. Figures and supplementary movies
(available at https://doi.org/10.1017/jfm.2019.816) illustrating the vortex structures
are complemented by vorticity contours and streamlines at key cross-sections to
better visualise the formation and trajectories of these structures. The small- and
large-amplitude modes are compared to experimental visualisations of the vortex
pair–wall interaction.

3.1. Vortex strength
The discussion concerning the strength of viscous vortex pairs in the wall effect is
directly coupled to the dynamics and development of the long-wave instability. Despite
the literature covering the development, growth and influence of the boundary layer
vorticity in two dimensions, the axially perturbed vortex, as in the case of wing-tip
vortices in ground effect, is not fully understood. This section seeks to relate the
differences in a perturbed three-dimensional vortex to the existing literature, and to
relate the dynamics of the vortex pair and the development of the instability to the
evolution in the strength of the vortices.

An overview of the similarities in vortex strength evolution and physics between all
modes of interaction is first discussed.

The size of individual vortices within counter-rotating vortex pairs increases as a
function of time due to viscous diffusion. This results in increasing overlap between
the vorticity distributions of the pair components, triggering cross-annihilation and a
decrease in circulation of each vortex. The decrease in circulation progressively lowers
the effective Reynolds number of the system, compounding the effect of viscosity
on the evolution. As the vortex pair interacts with the wall, a boundary layer with
opposite signed vorticity beneath each vortex further acts to strongly decrease the
circulation through vorticity cross-diffusion, until the primary vortex ‘rebounds’. The
formation of secondary vortices influences the circulation evolution through the action
of vorticity annihilation between primary and secondary vortex structures, after which
both the primary and secondary vortices diffuse through viscosity.

Moreover, the generation of secondary vorticity at the wall is a function of both
the instantaneous distance of the primary vortex core above the wall h/b0, and the
primary core radius a when the vortex is in close proximity to the wall. As the Crow
instability develops as an out-of-plane (θ 6= 0) sinusoidal wave in the axial direction,
the distance of each vortex core to the wall is a function of the axial coordinate z. The
respective decreases and increases in circulation of the primary and secondary vortices
hence occur most strongly in the troughs of the Crow instability, and most weakly at
the peaks.

Naturally, the evolution in vortex circulation relates directly to the evolution of
the vortex structures observed in the DNS. The variation in the evolution between
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Vortex pair wall interaction 884 A36-13

different initial heights gives credence to the three modes of interaction identified
by experiment. A key similarity between all modes of interaction is the evolution
up to and including the initial primary vortex–wall interaction. This phase consists
primarily of an out-of-wall effect, where the Crow instability develops at an angle
of approximately θ = 48◦, and viscous diffusion and primary vortex interaction
dominates circulation loss in the primary vortex pair, consistent with studies on
unbounded vortex pairs (Buntine & Pullin 1989). Upon subsequent wall interaction,
vorticity at the lower boundary gives rise to a boundary layer, where the circulation
of the secondary vorticity begins to grow. The shear layer is initially localised to
regions on the wall directly beneath the vortex cores, but then spreads outwards to
enforce the no-slip boundary condition as the vortices descend further.

Once the adverse pressure gradient in the boundary layer is strong enough, roll
up of the secondary vorticity into discrete vortex structures occurs, as discussed by
Harvey & Perry (1971). The subsequent development of the secondary vortex causes
the primary vortices to rise and the secondary vortex begins to spiral around the
primary vortex due to its lower circulation. The increase in wall-bounded vorticity is
arrested by the formation of a discrete vortex, and viscous diffusion between vortex
structures once again dominates the decrease in primary vortex strength.

This discussion continues with the key differences in vortex strength between initial
starting heights corresponding to the different modes of interaction.

At low Reynolds numbers, where the amplitude of the instability does not grow
enough for there to be significant three-dimensional effects, the numerical results
can be directly compared to the experimental quasi-two-dimensional results of the
wall-bounded instability (Asselin & Williamson 2017) (see figure 4a). At larger
Reynolds numbers and initial heights of h0/b0 = 5.0 above the wall (see figure 4b),
the difference in circulation between peak and trough cross-sections is small relative to
the other modes of interaction. An interesting observable phenomenon is the ‘crossing
over’ of the peak and trough circulations of the primary vortex pair in figure 4(b).
The initial ‘cross-over’ is due to the rotation of the instability plane, as shown with
DNS in § 3.2. The second ‘cross-over’ is related to the viscous annihilation between
the primary vortex and the formation of secondary vortex ‘tongues’, which remain
closer to the primary vortex pair at the initial peak. In the low Reynolds number
study (figure 4a), the onset of three-dimensional effects are noticeable but significantly
less pronounced; the rotation of the instability plane results in the peak and trough
circulation almost meeting and vortex tongues do not form (see § 4).

As the amplitude of the Crow instability grows, the relative changes in distance
between the troughs and peaks of both primary vortices and the wall result in
significantly stronger vorticity annihilation at the trough.

Illustrated in figure 5 are the differences between the initial heights upon wall
interaction; note the significant variation in vortex interaction at the trough between
the three modes. At initial heights of h0/b0 = 7.5 above the wall (see figure 4c), the
circulation at the trough of the primary vortex is observed to fall rapidly relative to
the peak, and the secondary vortex does not fully form at the trough before rotating
inwards towards the peak (see § 3.3 for more details). The primary circulation at
the trough, however, recovers slightly during the rebound as the primary vortices are
driven away.

The evolution in circulation is similar at large initial heights where the Crow
instability forms rings as shown in figure 4(d) for h0/b0= 10.0. In this case, however,
the circulation at the trough of the primary vortex instability falls to near zero, with
a vortex ‘bridge’ (for more details see § 3.4) containing the entirety of the remaining
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FIGURE 4. Circulation of the primary and secondary vortices as a function of time taken
by integrating around contours at 1 % of the maximum vorticity on planes oriented normal
to the axial direction. The circulations at the initial troughs and peaks are shown for
various initial starting heights and Reynolds numbers of the vortices, namely: (a) h0/b0=

5.0, Re= 1000; (b) h0/b0 = 5, Re= 2500; (c) h0/b0 = 7.5, Re= 2500; and (d) h0/b0 = 10,
Re = 2500. The black dashed line (– – –) represents the peak circulation of the primary
vortex, the black dotted line (· · · · · ·) the trough circulation of the primary vortex, the
blue dash-dot line (− ·− ·−·) the peak circulation of the secondary vorticity and the blue
solid line (——) the trough circulation of the secondary vorticity. The red markers are
taken from Asselin & Williamson (2017); red squares for the unbounded instability, the
red circle for the primary vortex circulation and the red triangles the secondary vorticity
circulation. The sign of the secondary vorticity circulation is reversed.
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FIGURE 5. Vorticity at the level of 0.01|ωzmax |, illustrating the onset of the wall interaction
in the three-dimensional Crow instability for the initial heights and corresponding times
of (a) the small-amplitude mode, h0/b0 = 5.0, τ = 6.37, (b) the large amplitude mode,
h0/b0 = 7/5, τ = 7.16 and (c) the large ring mode, h0/b0 = 10.0, τ = 11.14 at Re= 2500.
The trough and peak regions of the modes and primary/secondary vorticity are annotated.
Note the significant variation in vorticity annihilation at the troughs of the instabilities.
Two wavelengths are shown for clarity. Positive vorticity is shown in red, negative in blue.

circulation. The circulation at the peak also falls well below that of the h0/b0 = 7.5
case, with the secondary circulation at the peak growing to be stronger than that of
the primary pair. A slight recovery in the circulation of the primary pair at the trough
is observed at large times due to ring–ring interaction at the trough.

It is clear from figures 4 and 5 that three-dimensionality clearly plays a key role in
the influence of a wall on the vorticity cancellation of the strained vortices, which can
be directly related to the evolution of the vortex pair. The current body of literature
has not considered the influence of three-dimensionality and although the results
presented in this paper give an indication to its importance, a detailed study would
give more insight into wall-bounded vortex flows.

3.2. Small-amplitude mode
Depending on the extent of the instability, three modes of interaction between
a descending counter-rotating vortex pair interacting with a wall were identified.
Experimental visualisations of the perturbed vortex pair system interacting with
a wall at small perturbation amplitudes identified the formation of two vertically
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T1 and T2

T1
T2

T3
T4

T3 and T4

T1
T2

Vertical vortex rings
(T1 and T2)

(a) (b)

(c) (d) (e)

FIGURE 6. A comparison between experimental and numerical results for the small-
amplitude mode. Panels (a,b) show the x–z and y–z views of isosurfaces of vorticity
magnitude |Ω| = 0.005 for Re= 2500, a0/b0= 0.23 and at τ = 10.35. Two wavelengths of
λ= 5.4 are shown. Panels (c,d) show the laser illuminated dye of the secondary vorticity
in the same views at τ = 12.0, and (e) shows the laser illuminated dye of the primary
vorticity in the x–z plane at τ = 12.0. Panels (c,d) are reproduced with permission of
Asselin & Williamson (2017). Vortex ‘tongues’ are labelled T1–T4.

oriented vortex tongues (T1 and T2 in figure 6c), which were conjectured to form
vertically oriented vortex rings (figure 6d). These structures were observed to interact
at the symmetry plane and form secondary vertical loops.

A discussion of the results identified by experiments that result in these vertical
rings is first provided. Physical arguments together with support of the DNS results
suggest that vertical rings do not form as reconnection does not occur near the ground
plane. Furthermore, more sets of tongue-like structures not observed by experiment
are captured by DNS for smaller core sizes upon three-dimensional rebound of the
vortex pair (T3 and T4 in figure 6a,b). The study discussed here is at Re = 2500,
a0/b0 = 0.23, h0/b0 = 5 and A0/b0 = 0.01 resulting in an amplitude one vortex
spacing above the ground plane of A/b0= 0.1371. This is consistent with the vertical
rings mode predicted experimentally to occur between 0.1 6 A/b0 6 0.3 (Asselin &
Williamson 2017). A comparison between the experimental results and the current
study is presented in figure 6.

This section is organised as follows: initially, a discussion of the orientation of the
instability is presented, and the evolution of the small-amplitude mode made explicit;
then, the growth and inhibition of the wall-bounded three-dimensional Crow instability
is discussed; finally the pressure distribution resulting in axial flow in the primary
vortex is examined, and related to the evolution of the vortical structures.

As the primary vortex pair approaches the wall (PV1 and PV2 in figures 7a and 8a),
the vortices entrain the surrounding fluid and generate a thin boundary layer at the
wall. Upon approach, the orientation of the instability plane begins to rotate; this is
critically important as it dictates the dynamics underlying the formation of the vortex
tongues. The vortex pair continues to move closer to the wall, the vortices begin to
separate, and the boundary layers undergo rapid separation and growth (see figures 7b
and 8b). The adverse pressure gradient generated at the wall by the primary vortices
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PV1

PV1
PV1

PV2 SV1 SV2 PV1 PV2

PV2
PV2

SV1 SV2

SV2

T2 T2

T1
T1

T3

T3

T4

T4

TV1

TV1

TV2

L2

L1

L3

L4 L4

L5

L6

L6 L6

L2

L7

L8L4

L9

SV1 → T1

SV1 → L4 TV1 → L6
TV1 → L8

T1 + T2 → L3 

SV1 → L1

SV2 → T4
SV1 → T3SV2 → T2

L5

L5
L5

L7

L7L7

L9

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIGURE 7. The evolution of the small-amplitude mode projected onto the x–z plane, here
pictured for Re = 2500, a0/b0 = 0.23 and h0/b0 = 5.0. The times for the snapshots are
as follows: (a) τ = 5.25; (b) τ = 7.64; (c) τ = 8.75; (d) τ = 10.42; (e) τ = 11.54; ( f )
τ = 14.16; (g) τ = 17.03; (h) τ = 21.09; (i) τ = 27.05. The labels PV, SV and TV refer to
primary, secondary and tertiary vortices respectively; the labels T1–T4 refer to the vortex
tongues and the labels L1–L9 refer to the ‘loop-like’ structures identified and discussed
in the text. The supplementary movie (movie 1) animates the evolution and is extremely
helpful for visualisation.

acting on the region of local vorticity concentration within the boundary layer results
in the formation and separation of secondary vortices (SV1 and SV2) from the ground
plane. The secondary vortices induce an upwards velocity on the primary vortices,
resulting in the well-researched ‘rebound’, seen clearly between figures 8(a) and
8(b). Upon ‘rebound’ of the primary vortex following the roll-up of the secondary
vorticity, the arresting vortex detaches from the wall and is advected around the
primary vortex by induction caused by unequal strength vortex interaction. Unlike
the two-dimensional wall-bounded Crow instability, however, regions of the primary
vortices, being situated closer to the wall, result in the initial localised formation of
these secondary vortices. This gives rise to the characteristic vortex tongues pictured
in figures 6 to 8, labelled T1 through T4. Two primary vortex tongues (T1 and
T2) are formed per wavelength at the initial trough of the instability and grow at
significantly faster rates when compared to the cooperative (Crow) instability (see
figure 8d). A pair of secondary tongues (T3 and T4) form in the vicinity of the
initial peak of the primary vortex instability (figure 7d), resulting in four tongues
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PV1

T1 T3

L6 L6
L6

L1 L3 L4 L6 L7

L4 L4
L4

L3

PV1

PV1

PV1

TV1

TV1

TV1

SV1

SV1

SV → T1

T1 → L3

SV → T3
(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIGURE 8. The evolution of the small-amplitude mode projected onto the x–y plane, here
pictured for Re = 2500, a0/b0 = 0.23 and h0/b0 = 5. The times for the snapshots are as
follows: (a) τ = 5.25; (b) τ = 7.64; (c) τ = 8.75; (d) τ = 10.42; (e) τ = 11.54; ( f ) τ =
14.16; (g) τ = 17.03; (h) τ = 21.09; (i) τ = 27.05. See figure 7 for further information.

(a) (b) (c) (d)

2(p - p0)/®U2
0

-0.02000 -0.01525 -0.01050 -0.00575 -0.00100

FIGURE 9. Contours of pressure on Q-criterion isosurfaces of the secondary vortex for
the small-amplitude mode at Re= 2500, h/b0= 5.0 and a0/b0= 0.23, shown here for one
wavelength. Local pressure variations give an indication to the axial flow development
in the secondary vortices. The colours correspond to increasing pressure in the following
order: blue, green, yellow, red. The times for the snapshots are as follows: (a) τ = 7.96;
(b) τ = 8.36; (c) τ = 9.15; (d) τ = 10.35.

per instability wavelength. The isolated vortex tongue development is presented in
figure 9. The vortical structures formed resemble hairpin vortices and are remarkably
similar to the structures observed by Cheng et al. (2010) under oblique ring–wall
impingement.

The differences in topology between the tongue pairs is directly influenced by
the physics underlying their formation. The formation of the vortex tongues from
the secondary vortex is shown in figure 9, with the pressure contours illustrating
the strong axial flows away from the tongue tips further driving the rise of tongues.
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(a) (b)

2(p - p0)/®U2
0

-0.050000 -0.037375 -0.024750 -0.012125 0.000500

FIGURE 10. Contours of pressure on Q-criterion isosurfaces illustrating (a) the long-term
evolution of the primary vortex at τ = 27.85 and (b) the secondary/tertiary dual-loop
structures at τ = 15.92 of the small amplitude mode. The pressure contour colours range
from blue to green to red relative to the minimum and maximum pressures of the solution
at the given times.

The formation of the large tongues (T1 and T2) occur at the initial troughs of the
instability, whereby the large vorticity gradients cause locally higher pressure and drive
axial flow away from the tip of the tongue (figure 9a). The smaller tongues (T3 and
T4) form during the ‘rebound’ due to the rotation of the instability plane at the initial
peak of the Crow instability. After the rebound, increased local vorticity annihilation
between the primary and secondary vortex pair due to their relative proximity results
in a ‘flattened’ vortex tongue profile (figure 9b). Both loops vertically orient prior
to moving towards the plane of symmetry as in figure 9(c). Upon separation of the
secondary vortex from the ground plane, tertiary vortical structures are generated,
as observed in two-dimensional studies (cf. Kramer et al. 2007). The bottom of the
loops continue to advect about the primary vortex, and are stretched to the point of
weak interaction with tertiary vortices (TV1 and TV2 in figure 7e). The secondary
vortex remains connected as it is stretched around the primary vortex, and begins to
form sets of loop-like structures (L1, L2, L4 and L5) around the primary vortex pair
(figures 7f and 8f ).

Thereafter, the two pairs of vortex tongues (T1–T2 and T3–T4) interact at the
symmetry plane also forming loop-like structures (L3 in figures 7f and 8f ). The
secondary vortex loops both experience higher local viscous diffusion at the symmetry
plane due to their interaction, and the vortices stretch radially outwards, ultimately
resulting in a topologically complex flow. The complex dynamics that follows is an
integral sum of influence by the relative orientation, distance and circulation of a
given segment of a vortex relative to all other segments. For instance, sections of
the secondary vortex core parallel to the primary vortex (oriented in the spanwise
direction) are stretched further around the primary vortex core than non-parallel
sections; this results in further amplification of the ‘tongue-like’ topology (figures
7f–h and 8f–h). Under these interactions, the secondary vortex wraps entirely about
the primary vortex, and the tongues interact with one another to form ‘loop-like’
structures consisting of two counter-rotating vortex structures (L1, L2, L4 and L5
illustrated in figure 10b). In turn, the tertiary vortices (TV1 and TV2) wrap about
these secondary vortex loops to form horizontally oriented loop-like structures (L6,
L7, L8, L9 in figures 7g and 8g).
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Ultimately, the secondary vortex loops at the symmetry plane dissipate under
vorticity annihilation and viscous diffusion (figures 7h and 8h). The large-time
evolution of the wall generated flow primarily consists of both secondary (L4 and
L5) and tertiary (L6 and L7) ‘loop-like’ structures alongside the pair of primary
vortices (PV1 and PV2), shown in figures 7(i) and 8(i). These structures ultimately
interact with the symmetry plane and diffuse by viscosity, with the long-term evolution
resulting in the two primary vortices (PV1 and PV2) primarily bent and twisted at
the location corresponding to the initial peak of the Crow instability, illustrated in
figure 10(a).

The dynamics of the vortex system can be further understood through the lens
of the pressure distribution in the primary pair, which gives an indication of the
axial flow in the vortices and its connection to the dynamics of the instability in
wall effect. As regions of the vortex core closest to the wall experience larger
viscous annihilation, this locally raises the pressure of the fluid, driving fluid away
axially within the vortices. The evolution in pressure differential between the peak,
mid-plane and trough of the instability, and the connection to the evolution discussed
is illustrated in figure 11.

An additional interesting feature of the small-amplitude mode is the inhibition in
the growth of the Crow instability observed by experiment (Asselin & Williamson
2017). The numerical prediction of the evolution in the amplitude of the instability
in the primary vortex pair illustrates both the inhibition of the ring development and
the vortex ‘collapse’ visualised by Asselin & Williamson (2017).

The characteristic growth curve of the small-amplitude mode is shown in figure 12.
The amplitude of the Crow instability A/b0 grows in accordance with linear theory
until inhibited by the nonlinear ground effect near τ ≈ 5.5. As the secondary vorticity
separates from the ground plane and forms a discrete vortex, the formation of rings
is further inhibited by the induced velocity of the secondary vortices on the primary
pair, and grows to ultimately result in the radial arrest (τ ≈ 5.91) and decrease in the
amplitude of the instability until τ ≈ 8.75.

The onset of both nonlinear inhibition (II) and vortex ‘collapse’ (III) is now
explained. The trough of the Crow instability interacts with the ground plane first,
resulting in the localised generation of secondary vorticity. The resultant secondary
vortex induces a locally restoring velocity on the primary pair; the instability is
hence inhibited, and the amplitude of the distance between peak and trough is
driven downwards. Strong axial flow due to pressure gradients (see figure 11)
arising from the relative distance from the primary vortex pair to the ground plane,
alongside the formation of the vortex tongues, results in the eventual loss of spanwise
uniformity, visualised by experiment as vortex ‘collapse’ (see figure 6 for experimental
visualisation of the ‘collapsed’ vortex). The instability during the collapse of the
primary vortex is non-planar, and the amplitude is taken by projection onto the x–y
plane. The local spanwise deformation of the vortex tube hence coincides with an
increase in the plane-projected amplitude of the Crow mode. Unlike the unbounded
Crow instability, which forms rings, this region is hence associated with an indication
of vortex ‘collapse’ rather than an acceleration of the Crow instability. The evolution
in the amplitude of the instability; illustrating both the non-planarity and the loss of
spanwise uniformity of the third region, is further visualised in figure 13.

The plane on which the instability grows plays a critical role in the evolution of
the small-amplitude mode and is now discussed.

The instability remains almost entirely planar until the ‘rebound’ of the primary
vortex occurs, and the vortex cores begin to separate and bend. This corresponds to the
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FIGURE 11. Pressure differential of the vortex pair for the small amplitude mode at Re=
2500 and a0/b0 = 0.23 illustrating the axial flow evolution in the primary vortices. The
lines represent pressure differentials between the following cross-sections: the dashed line
(- -) between the peak and trough; the red line (——) between the peak and mid-plane
and the blue line (——) between the mid-plane and trough. The supplementary movie
(movie 1 at https://doi.org/10.1017/jfm.2019.816) animates the evolution and is extremely
helpful for comparison with this figure.

first inflection point of the orientation angle curve, and the angle rapidly changes until
the arrest of the primary vortex (see figure 13a). The rapid local radial expansion of
the primary vortex can be seen clearly in figure 13(b), where the initial trough of the
instability undergoes localised stretching of the vortex corresponding to the ‘collapse’
identified by experiment. An important feature of the vortex core evolution is that
the initial peak and trough of the instability rotate to become the trough and peak
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FIGURE 12. The Crow instability in ground effect for the small amplitude mode, here
plotted for Re= 2500 and h0/b0= 5.0. The amplitude of the displacement type instability
is shown as a function of time, and three regions are identified, namely (I) linear growth,
(II) nonlinear inhibition due to secondary vortex formation leading to radial arrest and (III)
vortex breakdown due to strong axial flows. The amplitude is geometrically determined
through planar projection of the vortex core line onto the axial plane.
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FIGURE 13. Visualisation of the evolution of the instability in time, here plotted for
h0/b0 = 3.5, Re= 1000, a0/b0 = 0.4. (a) The projection of the instability cores onto the
x–y plane, with curvature indicating an out of plane instability. (b) Three-dimensional view
of the development of the orientation of the instability with time. The maroon circles are
at z = 0 and the brown circles at z = λ to indicate depth. The numerals correspond to
the non-dimensionalised time steps as follows: 1, τ = 1.59; 2, τ = 3.18; 3, τ = 4.77;
4, τ = 6.37; 5, τ = 7.96; 6, τ = 9.55; 7, τ = 11.14; 8, τ = 12.73; 9, τ = 14.32;
10, τ = 15.92.

after wall interaction, respectively. This is the underlying reason for the formation of
four secondary tongues per instability wavelength. The primary vortex tongues (T1 and
T2) therefore locally develop at the initial trough of the instability, and both undergo
strong stretching due to the ground plane. The distinction is important as the instability
reverses direction in the three-dimensional interaction.
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FIGURE 14. The orientation of the instability for the small amplitude mode, here
illustrated for h0/b0 = 3.5, Re= 1000 and a0/b0 = 0.4. The instability plane rotates until
viscous effects result in a non-planar instability.

The rotation of the instability plane, shown quantitatively in figure 14, is not
observed in the other modes of interaction. Instability amplitudes in the range
0.0 < A/b0 . 0.3, where the plane rotation occurs, are hence all of one mode
with identical underlying dynamics, but with pronounced increases in similar
three-dimensional effects as the amplitude is increased. This provides the underlying
reason for the fundamental distinction between small- and large-amplitude modes.

Vorticity contours at select planes provides further insight into the evolution of the
flow and can be directly compared to two-dimensional studies of wall-bounded vortex
interaction.

Figure 15 shows a comparison of the vorticity at the initial peak and trough of the
instability. The vorticity contours at the peak of the Crow instability are reminiscent
of the two-dimensional wall-bounded instability, where once the secondary vorticity
separates from the boundary layer to form a discrete vortex (figure 15a), it closely
orbits the primary vortex. Unlike the two-dimensional instability, however, at τ = 3.98
(figure 15c,d), the instantaneous streamlines of the secondary vorticity at both the
peak and trough is oriented away from the primary vortices, and the formation of
the characteristic tongue topology begins. The mechanism of tongue formation at the
initial peak is weaker, and the separation between the primary and secondary vortex,
although greater than the two-dimensional Crow instability, is small relative to the
initial trough (figures 15e and 15f ). The collapse of the primary vortex at the initial
peak is first evident in figure 15(g), where the primary in-plane vorticity is no longer
concentrated to a circular region, and both deforms and expands to a larger area.

The large vortex tongues are formed at the initial trough of the instability
(figure 15d), and the peaks interact with the plane of symmetry well above the
primary vortices (figure 15h). It is clear that vorticity with opposite sign belongs
entirely to the primary vortex structure, and the tongues do not reconnect to form
rings in the small-amplitude mode. Both primary and secondary vortex tongues
are again observed to interact with the plane of symmetry (see figure 15i,j), with
figures 15(e) through 15( j) further illustrating the generation of tertiary vortices at
the wall.
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FIGURE 15. The z component of vorticity contours at cross-sections of the initial peak of
the instability, z=λ/4 (pictured in the left column) and the initial trough of the instability,
z= 3λ/4 (pictured in the right column) for the small-amplitude mode at different times,
here pictured for Re= 2500, h0/b0 = 5.0 and a0/b0 = 0.23. Instantaneous streamlines are
shown for half the domain and are symmetric about x/b0 = 0. Red indicates positive
vorticity, blue indicates negative vorticity. The times for the snapshots are as follows: (a,b)
τ = 3.18; (c,d) τ = 3.98; (e, f ) τ = 4.77; (g,h) τ = 5.17; (i,j) τ = 5.57.
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Vortex pair wall interaction 884 A36-25

The key observations of the numerical study of the small-amplitude mode can be
summarised as follows:

(i) Four vortex tongues as opposed to two observed by Asselin & Williamson (2017)
form.

(ii) The secondary vortex remains connected and does not form vertical vortex rings
as observed by Asselin & Williamson (2017).

(iii) The vortex tongues interact at the symmetry plane to form loop-like structures
prior to dissipation.

(iv) The rotation of the instability plane is a defining feature of the mode and plays
a critical role in the dynamics.

(v) Strong axial pressure driven flow drives vortex breakdown, and plays an
important role in the instability and evolution of the primary vortex. Even
at small instability amplitudes, it is clear that the dynamics differs greatly as
compared to the two-dimensional case.

3.3. Large-amplitude mode
At larger initial wall heights, the Crow instability evolves to larger amplitudes prior to
interaction with the ground plane. Experimental visualisations suggested the formation
of two horizontally oriented vortex rings which ‘rebound’ from the ground plane. The
DNS does not support this conclusion, with the observation of the formation of a
topologically complex vortical structure which wraps around the primary vortex. The
study discussed here is at Re = 2500, a0/b0 = 0.23, h0/b0 = 7.5 and A0/b0 = 0.01
corresponding to an amplitude one vortex spacing above the ground plane of A/b0 =

0.4731. This section is organised as follows; first, the evolution of the vortices is
discussed, with the various features of the evolution isolated and presented; second,
the pressure differential between peak and trough is related to the dynamics; and
third, vorticity contours at select cross-sections are used to gain further insight into the
flow evolution and to compare to both experimental visualisations and other modes of
interaction.

As the long-wave instability develops, the troughs of the instability move closer as
the peaks move apart (see figures 16a and 17a). Viscous annihilation, prior to wall
interaction, is locally enhanced at the trough of the instability. As a result of this
primary–primary (PV1 and PV2) vortex interaction, locally higher pressure drives
flow axially away from the trough to the peak of the instability. The rotation of the
plane of instability, as observed in the small-amplitude mode, does not occur for
the large-amplitude mode. The Crow amplitude continues to grow at θ = 45◦ outside
of the wall effect, and does not rotate near the wall. As such, the reversal of the
peak and trough does not occur, and the trough is almost completely evacuated of
vortical fluid (figures 16b and 17b). The instability interacts with the wall at a near
θ = 45◦ angle, and strong secondary vorticity at the wall forms parallel to the primary
pair, starting near the trough of the instability. As in the small-amplitude mode, the
vorticity rolls up into a secondary vortex (SV1 and SV2) which induces a restoring
force on the primary vortex pair, in the direction opposite to its radial expansion.
The primary vortices undergo a ‘rebound’ effect due to the induced velocity of the
secondary vorticity. Owing to the large curvature of the secondary vortex (seen clearly
in figures 16b and 16c), the dynamics of the rebound is markedly different from both
the two-dimensional Crow instability and the small-amplitude three-dimensional
instability. As the primary vortices begin to interact with the ground plane and
move apart from each other on a near hyperbolic trajectory, the formation of the
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(a) (b) (c)

(d) (e) (f)

SV1
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PV1

PV1

T1
T1

T1
T2 T2

T2

PV1

PV2

PV2

PV2

Reconnection Reconnection

Vortex bridge

FIGURE 16. The evolution of the large-amplitude mode projected onto the x–z plane, here
pictured for Re = 2500, a0/b0 = 0.23 and h0/b0 = 7.5. The times for the snapshots are
as follows: (a) τ = 7.96; (b) τ = 9.55; (c) τ = 11.14; (d) τ = 12.73; (e) τ = 15.91;
( f ) τ = 16.71. The labels PV and SV refer to the primary and secondary vortices
respectively. The supplementary movie (movie 2 at https://doi.org/10.1017/jfm.2019.816)
animates the evolution and is extremely helpful for visualisation.

(a) (b) (c)

(d) (e) (f)

Peak

Trough PV1 PV1

PV1PV1

PV1
SV1

T1

T1T1T1

FIGURE 17. The evolution of the large-amplitude mode projected onto the y–z plane,
here pictured for Re = 2500, a0/b0 = 0.23 and h0/b0 = 7.5. The times for the snapshots
are as follows: (a) τ = 7.96; (b) τ = 9.55; (c) τ = 11.14; (d) τ = 12.73; (e) τ = 15.91;
( f ) τ = 16.71. See figure 16 for further information.

secondary vorticity radially arrests the radial expansion of the primary vortices. The
induced velocity causing the rebound effect is markedly stronger at the trough regions,
resulting in enhanced bending at the troughs. The process of re-connection between
the primary vortices begins but then ceases as the vortices move apart forming a
vortex bridge (figure 16c). The primary vortex pair remains connected by the vortex
bridge consisting of two equal strength counter rotating vortices per Crow instability
wavelength (see figure 16d–f ).

As the secondary vortices are advected about the primary vortices, they each bend
and stretch inwards to form a horizontally oriented tongue (T1 and T2) around the
now ‘collapsed’ primary vortex, as shown in figures 16(c) and 17(d). Two tongues
form instead of the four of the small-amplitude mode as the instability plane does
not rotate. The secondary vortex undergoes a connective process with the primary
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Vortex pair wall interaction 884 A36-27

(a) (b)

(c) (d)

FIGURE 18. Q-criterion isosurfaces of the various features in the evolution of the
large-amplitude mode. (a) An y–z view rotated about z by 45◦ of the isolated vortex
tongue with pressure contours at large time steps. Vortex lines are shown in red to
illustrate the complex connected topology. (b) Isometric view of the long-term evolution
(τ = 34.93) of the large amplitude mode with contours of the ωz vorticity plotted.
(c) Development of the primary vortex at τ = 13.52 illustrating the inner tongue formation
and the re-connective process to the secondary vortex with contours of the ωz vorticity
plotted. (d) Long-term evolution τ =35.65 of the primary vortex with contours of pressure,
illustrating the resultant distortion. For contours of ωz, red indicates positive vorticity, and
blue indicates negative vorticity. For contours of pressure, the contour levels range from
blue to green to red from the minimum to maximum pressure at a given solution time.

vortex, seen initially at the trough in figure 16(b). These do not re-connect to form
horizontally oriented rings as previously suggested in the literature, but remain
topologically complex vortex cores which wrap around the primary vortex. The
tongues ‘rebound’ off the ground plane and rise well above the primary vortex pair
(see figure 17d,e).

Concurrent with the formation and rise of the horizontal vortex tongues, the primary
vortex is bent inwards, and the point of re-connection between primary and secondary
vortices both rotates and translates toward the centre of the collapsed vortex, shown
in figure 16(b–d). The resultant reconnected vortex is stretched around the primary
vortex, and at large times (see figure 16f ), where the two re-connection regions are
near one another, vorticity annihilation between the secondary vortices results in the
formation of a highly non-planar tongue pictured in figure 18(a). The secondary vortex
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FIGURE 19. Pressure differential of the vortex pair for the large amplitude mode at Re=
2500 and a0/b0 = 0.23 illustrating the axial flow evolution in the primary vortices. The
lines represent pressure differentials between the following cross-sections: the dashed line
(- -) between the peak and trough, the red line (——) between the peak and mid-plane
and the blue line (——) between the mid-plane and trough. The supplementary movie
(movie 2 at https://doi.org/10.1017/jfm.2019.816) animates the evolution and is extremely
helpful for comparison to this figure.

structures advect towards and interact with the plane of symmetry (see T1 and T2
in figures 16f and 17f ), resulting in the radial expansion of the secondary tongues
at the symmetry plane, alongside strong dissipation due to vorticity annihilation. The
weaker vortex structures also dissipate, resulting in the large time evolution of the flow
pictured in figure 18(b). The secondary structures at the plane of symmetry eventually
dissipate, leaving behind both primary vortices now highly non-uniform after the wall
interaction as shown in figure 18(d). Figure 19 illustrates the evolution through the
lens of pressure and axial flow, clearly illustrating the strong axial flows away from
the peak.

Analogous to the small-amplitude mode, vorticity contours at select cross-sections
provide further insight into the flow evolution and provide clear comparison between
the modes of interaction.
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FIGURE 20. The z component of vorticity contoured onto cross-sections of the initial
peak of the instability, z= λ/4 (pictured in the left column) and the initial trough of the
instability, z=3λ/4 (pictured in the right column) for the large-amplitude mode at different
times, here pictured for Re= 2500, h0/b0= 5.0 and a0/b0= 0.23. Instantaneous streamlines
are shown for half the domain and are symmetric about x/b0 = 0. Red indicates positive
vorticity, blue indicates negative vorticity. The times for the snapshots are as follows: (a,b)
τ = 6.37; (c,d) τ = 7.96; (e, f ) τ = 9.55; (g,h) τ = 11.94; (i,j) τ = 16.71.

Vorticity contours at both peak and trough cross-sections, as well as in the y–z
plane, are presented in figures 20 and 21, showing cross-sections of the complex
flow evolution. In the plane of the peak of the instability, the secondary vortex
separates from the ground plane (figure 20c,e) before rotating about the primary
vortex and stretching outwards (figure 20g). The formation of the large secondary
loops (figure 20g,i) is evident. In the plane of the trough of the instability, the
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FIGURE 21. The ‘rebound’ of the secondary vortices in the large amplitude mode is
illustrated and compared to experimental observations. (a) The large-amplitude mode
experimentally illuminated by dye (Asselin & Williamson 2017); (b) ωx contours of
vorticity plotted on the y–z plane corresponding to the centre of the primary vortex at
τ = 11.94. One wavelength of the large-amplitude mode for Re= 2500, a0/b0 = 0.23 and
h0/b0 = 7.5 is shown.

enhanced pressure drives the flow axially away from the trough, with much of
the fluid driven away from the region (see figure 20d,f ). After the rebound and
during the pressure gradient reversal, fluid is driven back to the troughs (figure 20h).
The strong axial flow results in the vortices entraining irrotational flow, and as the
characteristic vortex core size increases under viscous effects, a hollow vortex forms
(see figure 20j), also observed in experiment (Asselin & Williamson 2017). After the
‘rebound’ of the secondary vorticity, the secondary vortex tongue rises well above
the primary pair to form the characteristic T-shaped vortical structures observed
experimentally (figure 21a), with the additional complexities of the tongue visible in
the DNS (figure 21b).

To summarise, the key observations of the DNS study of the large-amplitude mode
are as follows:

(i) The instability plane does not rotate unlike the small-amplitude mode,
distinguishing the two modes of interaction.

(ii) The formation of only two vortex tongues, as opposed to four in the case of the
small-amplitude mode, is observed at the trough of the instability.

(iii) Two complex connected vortical tongues form and wrap around the primary
vortex. These are not horizontally oriented vortex rings as observed by Asselin
& Williamson (2017) based on experimental visualisation.

(iv) Strong axial flow away from the trough, and the formation of the secondary
tongues, strongly influences the primary vortex evolution, and the vortex becomes
heavily distorted at large times.

3.4. Large ring mode
The dynamics and evolution of the wall-bounded interaction and instability undergoes
a significant change if the primary vortex pair forms rings prior to wall interaction.
This mode of interaction presents a difficulty in that the topology of the rings in the
unbounded instability varies with time (Leweke & Williamson 2011). The vortex pair
first forms elliptic rings oriented in the x-direction, followed by elliptic rings in the
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Vortex pair wall interaction 884 A36-31

axial direction and ultimately undergoes a second reconnection. As the flow physics of
the wall-bounded instability is sensitive to the regions of the vortex pair closest to the
wall, the dynamics of the large ring mode varies as a function of initial vortex height
h0/b0. The results presented in this section are shown for h0/b0 = 10.0, consistent
with the initial vortex configuration after reconnection as observed experimentally by
Leweke & Williamson (2011). Despite the anticipated complexity of the resultant ring–
ring–wall interaction, the flow exhibits remarkable symmetries with strong parallels to
the other modes of interaction.

This subsection is organised as follows. First the evolution of the vortical structures
is discussed. Second, the pressure and vorticity at key cross-sections is visualised and
connected to the dynamics.

Above a critical height above the ground plane, where the primary vortex pair (PV1
and PV2) evolves outside of the wall effect, the vortex pair evolves identically to the
unbounded instability, with the formation of non-planar elliptic rings (PR) visible in
figures 22(a) and 23(a). In this initial configuration, the region of the ring closest to
the initial trough of the instability interacts with the ground plane first (see figure 23b).
The relatively large initial curvature of the non-planar ring, visible in figure 23(a),
results in the local formation of boundary layer vorticity, which, analogous to the
other modes, rolls up to form a vortex and induces a velocity on the primary ring
resulting in the ‘rebound’ effect. The rebound is locally stronger in regions of
the ring near the wall, and the ring evolves into a near planar configuration, as
shown in figure 23(c). The evolution in the pressure differential shows the axial flow
development primarily due to the formation of rings in figure 24. Simultaneously, the
secondary vorticity rolls up and separates from the ground forming a secondary ring
(SR in figures 22c and 23c). The primary rings both ‘rebound’ and expand radially
outwards until arrested by the formation of the secondary rings (see figures 22d and
23d). Upon ‘expansion’, the primary vortex rings interact at the initial trough of the
instability, and the characteristic vortex tongues (T1 through T6) begin to form as
seen in figures 22(e) and 23(e).

For the studied parameters, six vortex tongues form per instability wavelength
(see figures 22f and 23f ), which rotate about the primary vortex prior to advection
towards the symmetry plane as in figures 22(h) and 23(h). The formation of tongues
corresponds to three local peaks and troughs of the instability. Two of the local
extrema originate from the trough regions of the Crow instability during reconnection
(forming T1–T4). The third extremum is a result of the vortical structure due to the
bridging between the vortex rings (forming T5 and T6). The four vortex tongues
(T1–T4) formed at the ‘corners’ of the vortex rings observed in figure 22(e) are
identical under symmetric reflection and rotation, but differ in structure from the
other two vortex tongues (T5–T6) at the mid-plane of the ring. After formation,
the lower sections of the tongues are wrapped underneath the primary vortex. The
secondary vortex ring remains entirely connected by τ = 28.65 shown in figures 22( f )
and 23( f ). Unlike the small amplitude mode, however, the rebound effect for the
studied parameter does not lift the primary ring far from the ground plane, resulting
in significant vorticity annihilation with the wall-bounded vorticity. A process of
re-connection hence occurs between the tongues and the primary ring to form
complex non-planar vortex loops similar to the large-amplitude mode illustrated in
figures 22(i) and 23(i). The tongues interact at the plane of symmetry (see figures 22j
and 23j), and undergo rapid radial expansion. Both the primary and secondary vortices
proceed to strongly dissipate, ultimately resulting in the long term evolution pictured
in figures 22(l) and 23(l).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(k) (l)(j)

PV2 PR

PR-SR interaction

PR-PR interaction

PR-PR structures
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TV
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SR

PV1

T1

T1

PT1
PT1
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PR

PT2
PT2 PT2

T1-T6 vertically orient

T2

T2

T4
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T3

T3

T5
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T5

T6

T6

T6

Reconnection Vortex bridge

T1 + T3 → L1

T2 + T4 → L2

FIGURE 22. The evolution of the large ring mode projected onto the x–z plane, here
pictured for Re = 2500, a0/b0 = 0.23 and h0/b0 = 10. The configuration of the vortex
pair prior to wall interaction is representative of the first configuration of the long-wave
instability after the initial re-connective process. Contours of pressure are plotted on
the vortex isosurfaces. The contour levels are from blue to red between minimum and
maximum pressure of the entire evolution respectively. The times for the snapshots are
as follows: (a) τ = 7.96; (b) τ = 8.76; (c) τ = 11.14; (d) τ = 11.94; (e) τ = 13.53;
( f ) τ = 14.33; (g) τ = 15.12; (h) τ = 15.92; (i) τ = 17.52; ( j) τ = 19.10; (k) τ =
20.69; (l) τ = 23.87. The labels PV, PR and SR refer to the primary vortices, primary
vortex ring and the secondary vortex ring respectively; the labels T1–T6 refer to the
secondary vortex tongues; the labels L1–L2 refer to the ‘loop-like’ structures and the
labels PT1–PT2 refer to the primary vortex tongue structures identified and discussed
in the text. The supplementary movie (movie 3 at https://doi.org/10.1017/jfm.2019.816)
animates the evolution and is extremely helpful for visualisation.

Tertiary vortices (TV) form and are clearly seen in figure 22( f ), but for the
parameters of this study, the tertiary vortex is not strong enough to arrest the radial
expansion, and the primary vortices begin to interact with one another. The interaction
between primary vortex rings (PR–PR) is similar to the interaction of secondary
tongues at the symmetry planes. These regions of the primary vortex rise above the
ground plane due to mutual interaction, and form wide tongue-like structures (PT1
and PT2) evidenced in figures 22(h–j) and 23(h–j). As the primary rings continue to
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PV1

Trough Peak PR

TV T1

T1

L1 L2

T3

T3 T2 T4
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PT1

PT1PT1 PT1

PT1PR-PR interaction

SR

SR

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(k) (l)(j) T1 + T3 → L1

FIGURE 23. The evolution of the large ring mode projected onto the y–z plane, here
pictured for Re = 2500, a0/b0 = 0.23 and h0/b0 = 10. The configuration of the vortex
pair prior to wall interaction is representative of the first configuration of the long-wave
instability after the initial re-connective process. Contours of pressure are plotted on
the vortex isosurfaces. The contour levels are from blue to red between minimum and
maximum pressure of the entire evolution respectively. The times for the snapshots are
as follows: (a) τ = 7.96; (b) τ = 8.76; (c) τ = 11.14; (d) τ = 11.94; (e) τ = 13.53;
( f ) τ = 14.33; (g) τ = 15.12; (h) τ = 15.92; (i) τ = 17.52; ( j) τ = 19.10; (k) τ = 20.69;
(l) τ = 23.87. See figure 22 for further information.

radially expand, the peaks of the primary tongues undergo a re-connection process,
resulting in complex hairpin-like structures observed in figures 22(k) and 23(k).

The physics behind the bending and stretching of the vortex cores about the
circumferential axis and the formation of vortex tongues is comparable to oblique
ring/wall interaction (cf. Lim (1989), Verzicco & Orlandi (1994), Swearingen
et al. (1995) and Cheng et al. (2010)). In particular, the observations and physical
explanations of Verzicco & Orlandi (1994) are highly analogous to those of the
present work.

Vorticity contours at select planes provide additional insight into the flow physics
and allow for a direct comparison to the other modes of interaction. The vorticity
contours at the peak cross-section illustrates the boundary layer vorticity (figure 25a)
resulting in the formation of secondary (figure 25c), tertiary (figure 25d) and even
quaternary vortices (figure 25f ), which separate from the boundary layer and rotate
about the primary ring. In the large ring mode, where the rebound effect is not highly
pronounced, stronger vortices continue to form due to the ground as compared to the
small- and large-amplitude modes. The secondary vortices hence ‘tightly’ wrap around
the primary vortex, resulting in inner and outer counter rotating sections (figure 25h).
The vorticity at the initial trough shows the initial vortex bridge between the primary
ring (figure 25b–e), with little boundary layer generated vorticity. At larger time
steps, due to the ground plane interaction, the primary rings interact with each other
at the trough, and the vortices rise due to the induced velocity, as evidenced by
figure 25(g–j).

The key observations of the DNS study of the large ring mode in its first formation
are summarised as follows:

(i) A connected secondary vortex ring forms upon wall interaction.
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FIGURE 24. Pressure differential of the vortex pair for the large ring mode at Re= 2500
and a0/b0 = 0.23 illustrating the axial flow evolution in the primary vortices. The lines
represent pressure differentials between the following cross-sections: the dashed line (- -)
between the peak and trough, the red line (——) between the peak and mid-plane and the
blue line (——) between the mid-plane and trough. The supplementary movie (movie 3
at https://doi.org/10.1017/jfm.2019.816) animates the evolution and is extremely helpful for
comparison to this figure.

(ii) The secondary vortex ring remains connected and forms six secondary vortex
tongues per Crow wavelength.

(iii) The ‘rebound’ effect is significantly less pronounced as compared to the other
modes of interaction.

(iv) Ring–ring interaction plays an important role in the long-term dynamics.
(v) Unlike the other modes of interaction where secondary vorticity dissipates leaving

the primary vortices behind, the primary vortex ring dissipates at close to the
same time scale as the secondary vortex tongues.

4. Reynolds number and core size effects
The numerical study was conducted at various Reynolds numbers and three core

sizes to investigate the influence of the Reynolds number and core size on the
flow physics. The comparison presented here does not seek to investigate the entire
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FIGURE 25. The z component of vorticity contoured onto cross-sections of the initial
peak of the instability, z = λ/4 (pictured in the left column) and the initial trough
of the instability, z = 3λ/4 (pictured in the right column) for the large ring mode at
different times, here pictured for Re= 2500, h0/b0= 10.0 and a0/b0= 0.23. Instantaneous
streamlines are shown for half the domain and are symmetric about x/b0=0. Red indicates
positive vorticity, blue indicates negative vorticity. The times for the snapshots are as
follows: (a,b) τ = 11.14; (c,d) τ = 11.94; (e, f ) τ = 13.53; (g,h) τ = 15.12; (i,j) τ = 16.71.

parameter space but rather to show that the modes and observed instability evolution
are not specific to the choice of parameters presented in the results.

A study at a low Reynolds number, nominally for Re= 1000 and a0/b0 = 0.4, was
conducted. It was found that at these parameters, the growth rate of the instability
was small, and the necessary initial instability amplitude A/b0 was rather large (∼ 0.1)
to ensure the development of the appropriate modes upon wall interaction. The initial
flow configuration governing the formation of the various vortex tongues and dictating
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(a)

(b)

(c)

(d)

FIGURE 26. Q-criterion vortex visualisation of the instability for the small-amplitude
mode for variation in core size and Reynolds numbers. Both the x–z (pictured left) and
y–z (pictured right) views are shown. (a) Re = 1500 at τ = 11.14 with h/b0 = 3.5 and
a0/b0= 0.4. (b) Re= 2000 at τ = 11.14 with h/b0= 3.5 and a0/b0= 0.4. (c) Re= 2500 at
τ = 15.92 with h/b0= 5.0 and a0/b0= 0.4, which correspond to the parameters quoted in
Asselin & Williamson (2017). (d) Re= 2500 at τ = 12.0 with h/b0= 5.0 and a0/b0= 0.3,
which correspond closely to the parameters defining the least squares fit of the initial
velocity distribution shown in Asselin & Williamson (2017).

the flow evolution was observed, but the system was found to dissipate under viscous
effects prior to the formation of tongues or rings.

Figure 26 gives an indication of the effect of a different Reynolds number and
core size on the formation of vortex tongues by looking at the small-amplitude
mode. At an initial starting height of h0/b0 = 5.0, the low Reynolds number cases
strongly dissipate prior to wall interaction. Contrariwise, at an initial starting height
of h0/b0 = 3.5, the perturbation amplitude of the large Reynolds number case upon
wall interaction is not large enough for the pronounced three-dimensional features
to develop, and the interaction is predominantly two-dimensional. At these smaller
Reynolds numbers, the vortex tongue is either almost entirely dissipated (figure 26a)
or significantly less pronounced (figure 26b) prior to vertical orientation. Very small
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peak tongue structures form at larger times for the Re = 2000 and Re = 2500 cases,
but their formation is greatly inhibited as compared to the smaller core size study in
§ 3. For the tongues to form, the Reynolds number needs to be high enough such that
the vortex loop separates from the boundary layer vorticity. At the large Reynolds
number of Re = 2500 and h0/b0 = 5.0, which corresponds to the parameters quoted
in Asselin & Williamson (2017) (Rea = 1000, a/b0 = 0.4), two distinct tongues form
per long wavelength at the trough of the instability and the secondary vortex remains
connected (figure 26c). The increase in core size inhibits the growth of the additional
tongues. The two vortex tongues, however, vertically orient at a later time as compared
to the experimental results. At a smaller core size of a/b0 = 0.3, which corresponds
closely to the least squares fit of the superposition of two Gaussian vortices to the
experimental data plotted in Asselin & Williamson (2017) (Rea = 750, a/b0 = 0.3),
the tongues vertically orient at a similar time as compared to the experiments (see
figure 26d). At this smaller core size, however, the formation of four vortex tongues,
as opposed to the two observed by experiment, is clearly visible.

A core size of a0/b0 = 0.23 is hence chosen for the primary study as an analogue
to the experiments of Leweke & Williamson (1998); the smaller core size allows
for better visualisation of the various features of the flow, particularly the additional
vortex tongues, and still clearly resolves all three modes of interaction observed
by Asselin & Williamson (2017). The primary distinctions between the results for
different Reynolds numbers are: the growth rate of the wall-bounded instability, for
which the initial amplitude needs to be varied to ensure the appropriate amplitude of
the instability near the wall; the size of the tongues formed, due to stronger secondary
vortex formation; and the dissipative effects, which result in less coherent structures
at lower Reynolds numbers. Provided the Reynolds number is large enough such that
the vortical structures do not dissipate prior to the formation of coherent vortices, it
appears that for Reynolds numbers in the order of Re∼ 103, the macroscopic features
of the modes observed are independent of the parameters chosen.

5. Conclusions
A study of the three-dimensional long-wavelength stability of a counter-rotating

vortex pair in the presence of a wall was conducted. The DNS provided an
understanding of the entire evolution of the three modes observed by Asselin &
Williamson (2017), including both the initial development phase and the nonlinear
interaction phase. The numerical simulations do not confirm the conjecture of Asselin
& Williamson (2017) that secondary vertical or horizontal rings are formed, but
rather reveal that the fine-scale dynamics is more surely dominated by ‘tongues’ and
‘loops’ that do not reconnect into vortex rings. These three modes of wall-bounded
interaction, hence renamed the ‘small-amplitude mode’, the ‘large-amplitude mode’
and the ‘large ring mode’, differ based on the development of the Crow instability
prior to strong wall interaction, characterised by the amplitude of the instability one
initial vortex spacing above the wall A/b0.

In all cases, the wall significantly altered the development of the long-wavelength
instability, with the resultant flow field highly three-dimensional. The formation of
characteristic hairpin-like vortex tongues is observed for all modes, which drastically
alters the evolution of the primary vortex pair. Both the primary and secondary
structures ‘rebound’ off the wall, and the resultant evolution is markedly different
from both the unbounded instability and the two-dimensional bounded instability.

For the small-amplitude mode, recovered in this study for A/b0 = 0.1371, the
resultant formation of secondary vortex tongues interact with one another at the mid
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plane of the primary vortex pair. The DNS uncovers the primary mechanism for this
mode, namely the rotation of the plane of instability to a near 0◦ orientation at the
wall. The wall also acts to inhibit the growth of the instability via the formation of
boundary layer vorticity. The large-amplitude mode differs from the small-amplitude
mode in that the difference in viscous interaction from peak to trough at the wall
is significantly larger. The fundamental reason for this is that the plane containing
the instability does not rotate much from 45◦ prior to strong viscous wall interaction.
Finally, the large ring mode is characterised by the formation of rings prior to wall
interaction. The topology of the rings prior to wall interaction is a strong function
of the time outside of ground effect (cf. Leweke & Williamson 2011), and the
resultant wall-bounded evolution hence varies with the initial vortex starting height.
Specifically, the case of the initial ring topology evolution due to the cooperative
instability, namely the formation of non-planar spanwise oriented elliptic rings is
analysed, and striking similarities are found between the other modes of interaction.

The mechanism governing the formation of the vortex tongue structures is for all
modes related to the difference in distance from the wall to the perturbed primary
vortex, which varies as a function of the axial coordinate. Sections of the primary
vortex closest to the wall undergo a local increase in vorticity annihilation, resulting
in a local increase in pressure driving the fluid axially away from the trough regions.
This results in magnified stretching and rotation of these localised regions of the
separated secondary vortex, resulting in the formation of secondary loops.

For the small-amplitude mode, the secondary vortex remains connected until
dissipative effects take hold, and is even observed to form a second set of smaller
tongues after a full rotation about the primary vortex. Both sets of tongues consist
of four tongues per wavelength of the Crow instability. Of the first set of tongues
which form between the primary vortices, two large and two small tongues form
per wavelength. These tongues rebound and interact with the plane of symmetry
well above the primary vortex pair, and the large tongues expand outwards to form
large planar ring-like structures. The long-term evolution of the flow sees a distorted
primary vortex pair, influenced by the evolution of the secondary tongues, with the
four vortex tongues dissipating by the action of viscosity at the peak and trough axial
cross-sections of the primary pair.

The evolution of the large-amplitude mode shows the disconnection of the secondary
vortex, with a re-connective process resulting in the formation of highly non-planar
connected vortical structures that are stretched and rotated around the primary vortex,
of which there are two per Crow wavelength. The structures rebound and the tops
of the structures rise well above the primary vortex pair. A series of complex re-
connective processes characterises the flow evolution. A primary vortex tongue forms
at the initial peak of the primary vortex, and strong axial flow from trough to peak
results in a hollow vortex. At large times, the secondary vortex structures interact
with the mid-plane to form large planar ring-like structures similar to those of the
small-amplitude mode prior to dissipation and the primary vortex pair remains highly
distorted.

At initial amplitudes large enough such that the primary vortex pair develops into a
periodic series of rings under the long-wave cooperative instability, the wall interaction
is a strong function of the initial height at which the vortices are generated. For the
first configuration of the vortex rings after the initial re-connection, the rings radially
expand upon wall interaction and six secondary vortex tongues are formed per Crow
wavelength. The rings are initially non-planar, but ‘flatten’ out upon wall interaction
to form ellipses with a spanwise major axis. The tongues ‘rebound’ and undergo
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re-connective processes similar to the large-amplitude mode, although the ‘rebound’
effect is not as pronounced. The loops of the tongues approach each other and interact
in the mid-plane and expand outwards prior to dissipation. The primary vortex ring
expansion is arrested by primary ring–ring interaction, resulting in the growth and
formation of hairpin-like structures between the primary rings. Unlike the other two
modes of interaction, the primary vortex rings dissipate within the same order of time
scale as the secondary vorticity; the long-term evolution of the flow is hence observed
to be gradual dissipation of the complex structures under the influence of vorticity
diffusion.

The practical application of this research, alongside the similarities between the flow
evolution of this study and other wall-bounded flow configurations, lends itself to a
great deal of potential further interest. It is clear that physical controls to attempt to
accelerate the growth rate of the Crow instability will need to consider the critical
height at which the vortices are formed above the ground. Furthermore, validating
the flow evolution for larger Reynolds numbers, both active and passive control of
the growth of the wall-bounded instability, and investigations into the evolution of
the large ring mode at different starting heights could extend this work to provide a
detailed understanding of the physics underlying this fundamental flow configuration.
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