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This paper presents the characteristics of the different stages in the evolution of
the wake of a circular cylinder rolling without slipping along a wall at constant
speed, acquired through numerical stability analysis and two- and three-dimensional
numerical simulations. Reynolds numbers between 30 and 300 are considered. Of
importance in this study is the transition to three-dimensionality from the underlying
two-dimensional periodic flow and, in particular, the way that the associated transitions
influence the fluid forces exerted on the cylinder and the development and the
structure of the wake. It is found that the steady two-dimensional flow becomes
unstable to three-dimensional perturbations at Rec,3D = 37, and that the transition to
unsteady two-dimensional flow – or periodic vortex shedding – occurs at Rec,2D= 88,
thus validating and refining the results of Stewart et al. (J. Fluid Mech. vol. 648,
2010, pp. 225–256). The main focus here is on Reynolds numbers beyond the
transition to unsteady flow at Rec,2D = 88. From impulsive start up, the wake almost
immediately undergoes transition to a periodic two-dimensional wake state, which, in
turn, is three-dimensionally unstable. Thus, the previous three-dimensional stability
analysis based on the two-dimensional steady flow provides only an element of
the full story. Floquet analysis based on the periodic two-dimensional flow was
undertaken and new three-dimensional instability modes were revealed. The results
suggest that an impulsively started cylinder rolling along a surface at constant velocity
for Re & 90 will result in the rapid development of a periodic two-dimensional
wake that will be maintained for a considerable time prior to the wake undergoing
three-dimensional transition. Of interest, the mean lift and drag coefficients obtained
from full three-dimensional simulations match predictions from two-dimensional
simulations to within a few per cent.

Key words: aerodynamics, flow–structure interactions, wakes

1. Introduction
Many previous studies have focused on the flow around a circular cylinder in an

unbounded flow. In the Stokes range (Re = Ud/ν � 1), viscous effects dominate
the flow. The flow around a stationary cylinder remains attached and symmetrical

† Email address for correspondence: farah.houdroge@monash.edu
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Two- and three-dimensional wake transitions of a rolling cylinder 33

about the spanwise and streamwise axes through the centre point of the cylinder. As
the Reynolds number is increased, the flow loses its upstream/downstream symmetry
as the fluid separates at the rear of the cylinder. This results in the formation of
two closed recirculation zones, first occurring at 5 . Re . 7 (Taneda 1956; Dennis &
Chang 1970). The length of these recirculation regions was found to increase linearly
with Re, until at Re ' 46, the wake becomes absolutely unstable and undergoes a
transition to a periodic flow state (Roshko 1954; Taneda 1956; Provansal, Mathis &
Boyer 1987; Henderson 1997). This transition is the result of a Hopf bifurcation (i.e.
a steady to unsteady transition) of the steady flow that occurs as the flow becomes
globally absolutely unstable (Provansal et al. 1987; Henderson 1997). The saturated
state of vortex shedding in the wake of the cylinder takes the form of a Bénard–von
Kármán vortex street (Bénard 1908; von Kármán 1911) that is characterised by a
periodic, repeating pattern of swirling vortices of opposite sign that are shed from
the rolled-up shear layers.

As the Reynolds number is increased further, the now-periodic wake undergoes
a further transition to three-dimensional flow. Williamson (1988) found that two
clearly identifiable transitions take place sequentially that are distinguished by the
development of distinct spatio-temporal three-dimensional wake states designated
Mode A and Mode B. The first of these transitions is also accompanied by a
discontinuity in the Strouhal–Reynolds number curve. The Mode A instability
appears beyond Re ≈ 190 (Williamson 1996b; Henderson 1997), resulting in pairs
of counter-rotating streamwise vortices forming along the span of the cylinder. This
three-dimensional mode has a spanwise wavelength of λ≈ 4d, where d is the diameter
of the cylinder. The second transition to Mode B becomes fully developed at Re= 260
and has a preferred spanwise wavelength of λ' 0.8d (Williamson 1996b; Henderson
1997). The remnants of the streamwise Mode B vortical structures can be seen at
much higher Reynolds numbers, well beyond the development of fully turbulent flow
(e.g. Wu et al. 1996).

Imposing a rotation on a cylinder in an unbounded flow has a strong influence
on the wake structure and transitions. The degree of rotation is often quantified by
the non-dimensional rotation rate, α=ωd/(2U), defined as the ratio of the tangential
surface speed (ωd/2, with ω the angular velocity) and the free-stream speed U. Many
authors, including Tang & Ingham (1991), have shown that imposing a rotation on
the body renders the wake asymmetrical and, at Re 6 60, depending on the rotation
rate, the elimination of one or both of the recirculation regions in the wake can be
observed. For larger Re, the imposed rotation may also suppress or delay the transition
to unsteady flow in comparison to the case of a non-rotating body.

For the non-rotating cylinder, as the Reynolds number is increased, the wake
becomes unsteady. At low rotation rates, a Bénard–von Kármán vortex street is
observed (Jaminet & Atta 1969), also known as Mode I shedding. For higher values
of α, the unsteady wake narrows and is displaced in the direction of motion of
the cylinder surface (Díaz et al. 1983; Mittal & Kumar 2003). As the rotation rate
increases beyond a critical value of αc ' 2 (Díaz et al. 1983; Mittal & Kumar
2003), the unsteady flow is completely suppressed. Instead of vortex shedding, the
surrounding fluid is entrained by the rotation of the body and creates a layer around
the cylinder that thickens as α increases (Díaz et al. 1983; Mittal 2000). Perhaps
surprisingly, a second shedding regime is observed over a specific range of α at
much higher α (Mittal & Kumar 2003; Kumar, Cantu & Gonzalez 2011), where
single-sided vortex shedding occurs with a period much longer than that of Mode I
shedding. This wake state is referred to as Mode II shedding.
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Limited investigations have been carried out on the development of three-
dimensional wakes for a rotating cylinder. At low rotation rates, α < 1, Akoury
et al. (2008) found that Mode A becomes unstable at higher Reynolds numbers
as α is increased. At higher rotation rates, the flow becomes increasingly unstable
to perturbations at Re = 200 in the range 3 6 α 6 5 (Meena et al. 2011). Recent
numerical and experimental investigations (Mittal & Kumar 2003; Radi et al. 2013;
Rao et al. 2013a,b) have identified several new three-dimensional transitions for
Re< 400. In the Mode I shedding regime, five three-dimensional modes were found
to become unstable and, in the steady regime of flow α & 2, four three-dimensional
modes were observed.

When the presence of a wall is considered, Taneda (1965) showed that a stationary
wall near a cylinder stabilises the flow. Arnal, Goering & Humphrey (1991) found
that the onset of unsteady flow in the presence of a wall is shifted to Re≈ 100, from
Re ≈ 46 for an isolated cylinder in a free stream. This finding is correct as long as
the gap ratio between the cylinder and the wall does not exceed a certain critical
value, which depends on the Reynolds number. The steady flow around a stationary
cylinder on a wall is similar to that of a backward-facing step (Armaly et al. 1983); it
is characterised by a single recirculation region, surrounded by fluid which separates
from the body and reattaches on the wall downstream. However, the behaviour of the
flow depends on many parameters: the distance between the cylinder and the wall, the
motion of the wall relative to the cylinder and the imposed rotation of the body.

Stewart et al. (2010) investigated the case of a rotating cylinder translating next
to a moving wall at rotation rates in the range −1 < α < 1. In the steady flow
regime, two recirculation zones are observed in the wake, and the drag and lift forces
decrease as Re increases. Prograde rolling (α > 0) was found to destabilise the flow
whereas retrograde rotation (α < 0) delayed the onset of unsteady flow. This was later
confirmed/extended in a study by Rao et al. (2011) for which higher values of α
were considered.

For unsteady flows in the wake of a cylinder placed near a wall, the strength of
the vortex shedding decreases as the cylinder is placed closer to the wall (Lei, Cheng
& Kavanagh 1999). At Re = 170, Taneda (1965) observed a single row of vortices
for a cylinder moving near a wall. In the unsteady regime, vortex pairs with a net
rotation appear in the wake as a result of the interaction between the shear layer shed
from the top of the cylinder and induced secondary shedding from the wall boundary
layer vorticity downstream (Stewart et al. 2010; Rao et al. 2011). Unlike the case
of a cylinder placed in a free stream but similar to the flow over a backward-facing
step, the wake undergoes a transition to three-dimensionality before the onset to two-
dimensional vortex shedding (Stewart et al. 2010; Rao et al. 2011).

In the current study, the results of Stewart et al. (2010) for a cylinder rolling
at α = 1 without slipping on a wall are extended to identify and characterise the
different saturated flow states and modes of the three-dimensional instability, and
their influence on the underlying two-dimensional structure of the flow. A more
detailed description of the problem, the corresponding equations and the numerical
methods are given in the first section of this paper. Then follow the results from
the linear stability analysis and Floquet analysis, highlighting the appearance of new
modes of the three-dimensional instability. Thorough comparisons of the similarities
and differences in the flow structures and fluid forces show how the two-dimensional
simulations can be used confidently to approximate this problem during the initial
stage of flow development. The essential findings of this work are then summarised
in the last section, along with some discussion of future research extending from this
paper.
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d
U

x

y

FIGURE 1. A two-dimensional schematic of the problem under consideration: a cylinder of
diameter d is rolling along a wall. The translational and angular velocities are represented
by U and ω, respectively. In the simulations, the inertial frame of reference (x, y) is
attached to the centre of the body.

2. Problem description and methodology
Figure 1 illustrates the problem set-up and parameter definitions: a cylinder of

diameter d is rolling along a wall at a rotation rate ω. For computational simplicity,
the frame of reference is placed at the centre of the cylinder, this being equivalent to
the fluid and wall moving past the fixed, rotating cylinder at a speed U.

2.1. Background to new stability analysis studies
Consider a stationary cylinder placed in a free stream. In the steady, laminar regime
below the critical Reynolds number Rec,2D = 46 at which transition to periodic
shedding begins, it is well known that two mirror-symmetrical recirculation regions
form in the wake whose length increases with the Reynolds number. For Reynolds
numbers above the critical value, the steady wake is unstable, causing a decrease
in the mean formation length of the recirculation region of the time-averaged flow
(Williamson 1996a,b). Experiments and numerical simulations show that, for a given
Reynolds number after the background flow is impulsively started, the evolution of
the recirculation region is characterised by a linear, steady increase of its length
followed by slowly growing waviness, and eventually, a fully developed Bénard–von
Kármán vortex street. Thus in this case, the growth of perturbations leading to a
fully developed periodic wake occurs after the steady symmetric wake state has
fully (or almost fully) formed (e.g. see Thompson & Le Gal 2004). Moreover, the
two-dimensional steady wake is not unstable to three-dimensional perturbations;
the first three-dimensional transition occurs on the two-dimensional periodic wake
(Williamson 1988).

Conversely, when the cylinder is uniformly rolling along a wall, two-dimensional
numerical simulations indicate that well below the critical Reynolds number for
sustained two-dimensional (2-D) vortex shedding (Rec,2D = 88), vortex shedding still
occurs almost from startup. This can be seen from figure 2, which shows the time
evolution of the lift coefficient for Re = 90 and 160, above the critical Reynolds
number. The oscillations in the curves, observed from the initial starting time t0 = 0,
are the result of the immediate shedding of vortices into the wake. For Re = 90, it
takes approximately six shedding cycles to reach the asymptotic periodic state, whilst
for Re = 160, well beyond the critical Reynolds number, the transition to the fully
developed 2-D periodic state is essentially complete after just two shedding periods.
Interestingly, even when the flow is laminar below Rec,2D, it undergoes immediate
vortex shedding in the first instances of the flow development before settling down
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FIGURE 2. Time evolution (scaled by d/U) of the lift coefficient from impulsive startup.
(a,b) Evolution for Reynolds number below the transition to 2-D shedding. (c,d) Evolution
for Reynolds numbers beyond the transition to vortex shedding.

to its steady state. This effect was also made visible by Le Gal & Croquette (2000)
who studied experimentally the impulse response of the subcritical wake of a cylinder.
These preliminary oscillations are visible on the plots of the lift force on figure 2 for
Re= 60 and 80.

Thus, while Stewart et al. (2010) documented that the onset of 3-D flow occurs
at a Reynolds number of approximately 40 on a steady recirculating base flow, the
actual flow transitions and dynamics observed in practice, for a cylinder rolling along
a surface at constant velocity from an impulsive start, may be different. In particular,
above the critical Reynolds number for 2-D vortex shedding, a 2-D periodic wake
seems likely to essentially fully develop prior to any observable development of
three-dimensionality. This hypothesis will be tested in the following sections. It has
several consequences. It suggests that 2-D simulations have validity well beyond the
critical Reynolds number at which three-dimensionality first occurs for the steady
wake, at least for a non-negligible period after impulsive startup. It also suggests that
the previously documented 3-D stability analysis (Stewart et al. 2010) based on a
steady 2-D base flow may not have a strong relevance for the overall wake dynamics
for Reynolds numbers above Rec,2D. Finally, it is not clear what this means for the
fully saturated wake state at different Reynolds numbers. Thus, in this paper, the
stability analysis is extended to examine the 3-D stability of the 2-D periodic wake
state. This is supplemented by direct 3-D simulations to examine the longer-term
wake evolution.

2.2. Governing equations
The governing equations are the continuity and incompressible Navier–Stokes
equations for the motion of the fluid. Let u(x, y, z, t) = (u, v, w) represent the
velocity of the fluid in Cartesian coordinates. In the case of an incompressible flow,
the continuity equation is:

∇ · u= 0, (2.1)

and the general form of the incompressible Navier–Stokes equation is:

∂u
∂t
+ u · ∇u=−

1
ρ
∇P+ ν∇2u, (2.2)
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where ρ is the density of the fluid and P is the static pressure. The drag and lift
coefficients per unit length are defined in the usual way:

CD =
D

1
2ρU2d

and CL =
L

1
2ρU2d

, (2.3a,b)

where D and L represent the drag and lift forces, respectively.

2.3. Numerical scheme
The solver is based on a code that has been used extensively for similar problems,
so it will only be described briefly here. Overall, the time-dependent incompressible
Navier–Stokes equations for the fluid are solved in Cartesian coordinates using
a spectral-element approach, in a cross-sectional plane for 2-D simulations or a
combined spectral-element/Fourier approach in three dimensions. The spectral-element
method is a formulation of a high-order finite-element method that uses high-order
Lagrangian interpolants to approximate the solutions of partial-differential equations.
It has the advantage of converging much faster than a typical finite-element method,
considering that the error decreases exponentially with the order of the approximating
polynomial, all the while retaining some of the flexibility for modelling complex
geometries that finite-element methods provide. The (nodal) approach adopted is
described in detail in Karniadakis & Sherwin (1999). The spatially discretised
equations are then integrated forward in time using a three-step time-splitting
approach, where the advection, pressure and diffusion terms are treated separately
and sequentially (Chorin 1968; Karniadakis, Israeli & Orszag 1991; Thompson et al.
2006). The advection step is carried out using the third-order Adams–Bashforth
approach. The pressure and viscous substeps are both solved directly using a
lower upper (LU) decomposition, which factors the matrices into a lower triangular
matrix L and an upper triangular one U (Turing 1948), invoking the second-order
Adams–Moulton (Crank–Nicholson) approximation for the linear viscous step. Whilst
higher-order time-stepping methods could be employed, because typically several
hundred time steps are required per shedding cycle to guarantee stability of the
iterative approach, there is no discernible improvement in accuracy of the overall
solution. The solver is explained in more detail by Thompson et al. (2006), and
has widely been tested, validated and used for studies of flows around bluff bodies
such as cylinders (Thompson, Leweke & Williamson 2001b; Ryan, Thompson &
Hourigan 2005; Rao et al. 2011) and spheres (Thompson, Leweke & Provansal
2001a; Thompson et al. 2006; Rao et al. 2012). This code has also been modified
to determine the linear stability of base flows, as explained in § 2.4 below.

In addition to the time-dependent solver, a steady solver is required to produce the
steady base flows for the linear stability analysis. This is a modified version of the
spectral-element code based on the penalty formulation (see Zienkiewicz 1977). This
has been validated for a number of similar flow problems (e.g. Thompson & Hourigan
2003; Jones, Hourigan & Thompson 2015).

2.4. Linear stability analysis
Linear stability analysis was undertaken in order to quantify flow transitions leading
to vortex shedding, and to 3-D flow. For a 2-D steady or periodic base flow U, the
velocity and pressure perturbation fields (u′, P′) satisfy the continuity and linearised
Navier–Stokes equations:

∇ · u′ = 0, (2.4)
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∂u′

∂t
+U · ∇u′ + u′ · ∇U =−

1
ρ
∇P′ + ν∇2u′. (2.5)

Because the coefficients are independent of z, the perturbation fields can be further
decomposed, representing the z-dependence of variables as the sum of complex terms
of a Fourier expansion:

u′(x, y, z, t) =
∑

k

ûk(x, y, t) sin(2πz/λk), (2.6)

v′(x, y, z, t) =
∑

k

v̂k(x, y, t) sin(2πz/λk), (2.7)

w′(x, y, z, t) =
∑

k

ŵk(x, y, t) cos(2πz/λk), (2.8)

P′(x, y, z, t) =
∑

k

P̂k(x, y, t) sin(2πz/λk). (2.9)

Using these expansions, equations (2.4) and (2.5) give for each of the Fourier modes:

∂ ûk

∂t
=−

(̂
uk
∂U
∂x
+ v̂k

∂U
∂y
+U

∂ ûk

∂x
+ V

∂ ûk

∂y

)
−

1
ρ

∂P̂k

∂x
+ ν

(
∂2ûk

∂x2
+
∂2ûk

∂y2
− (2π/λk)

2ûk

)
,

(2.10)
∂v̂k

∂t
=−

(̂
uk
∂V
∂x
+ v̂k

∂V
∂y
+U

∂v̂k

∂x
+ V

∂v̂k

∂y

)
−

1
ρ

∂P̂k

∂y
+ ν

(
∂2v̂k

∂x2
+
∂2v̂k

∂y2
− (2π/λk)

2v̂k

)
,

(2.11)
∂ŵk

∂t
=−

(
U
∂ŵk

∂x
+ V

∂ŵk

∂y

)
− (2π/λk)

1
ρ

P̂k + ν

(
∂2ŵk

∂x2
+
∂2ŵk

∂y2
− (2π/λk)

2ŵk

)
,

(2.12)
∂ ûk

∂x
+
∂v̂k

∂y
− (2π/λk)ŵk = 0. (2.13)

These perturbation field modes (ûk, v̂k, ŵk, P̂k) can be further expressed as a sum
of eigenmodes, each with its own growth rate. After choosing a wavelength and
integrating these equations from initially random fields for sufficient time, the velocity
perturbation fields will be dominated by the eigenmodes with the largest growth rates.
Using a Krylov subspace together with Arnoldi decomposition allows a sequence of
evolved fields to be decomposed into the dominant eigenmodes together with their
corresponding growth rates (e.g. Mamun & Tuckerman 1995; Barkley & Henderson
1996). If Â represents any of the perturbation fields ûk, v̂k, ŵk and P̂k, then this
method gives Â(x, y, t+ T)= Â(x, y, t) exp(σT), if the eigenmode spatial distribution
is not a function of time. Here σ is the growth rate and T is the time interval
over which the growth of the mode is recorded. It is also possible to get pairs of
eigenmodes that have complex conjugate growth rates, providing the possibility of
solutions with a periodic component on top of the exponential time variation. These
pairs can also be extracted directly from the Arnoldi decomposition together with
the complex growth rates σ = σr + iσi. For a 3-D transition on a 2-D periodic base
flow, the procedure is the same, with the sequence of perturbation fields forming
the Krylov subspace taken at full base flow period intervals T . In that case, the
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Two- and three-dimensional wake transitions of a rolling cylinder 39

approach is called Floquet analysis, and the growth of each eigenmode is often
expressed as a Floquet multiplier µ= exp(σT), i.e. the amplitude of the mode after
it has evolved for one period relative to the initial state. Again, it is possible to have
pairs of eigenmodes with complex conjugate Floquet multipliers that are resolved
through Arnoldi decomposition. For the 3-D analysis, the eigenmodes depend on the
selected spanwise wavelength λk. If |µ| > 1 (or σr > 0), then the perturbation field
will be amplified over time, while |µ|< 1 (or equivalently σr < 0) for all λ implies
that any perturbation will decay and, hence, the flow is linearly stable. Transition
occurs when |µ| = 1 or σr = 0. For the 3-D case, this condition has to be tested for
every possible spanwise wavelength. The (eigen)modes that are obtained with Floquet
analysis reported in this paper comprise periods equal to that of the periodic 2-D
base flow, twice the period (subharmonic modes) and modes with different periods
(quasi-periodic modes). The first two cases are characterised by a growth rate σ that
is real. The quasi-periodic modes have a period that is not commensurate with the
base flow period and exist in pairs with complex conjugate Floquet multipliers. More
details can be found in Elston, Sheridan & Blackburn (2004), Ryan et al. (2005),
Leontini, Thompson & Hourigan (2007), Griffith et al. (2007, 2011), Stewart (2008).

2.5. Domain size and resolution studies
For this study, the Reynolds number range is restricted to be Re6 300, covering flow
transitions to vortex shedding and to three-dimensionality.

Two domain sizes were investigated to quantify blockage effects. All positions are
non-dimensional and are scaled by the diameter of the cylinder. The first mesh M1 is
shown in figure 3 and consists of 1472 macro-elements. The upstream, downstream
and upper boundaries are positioned at (x1,u, x1,d, y1) = (−25, 25, 50), respectively.
The second mesh M2, also shown on figure 3, consists of 1906 elements and has
the dimensions (x2,u, x2,d, y2)= (−50, 50, 100). Both meshes have increased resolution
in the vicinity and downstream of the cylinder that is located at x = 0 and y = 0.
The differences in the drag and lift forces do not exceed 1 % at the highest Reynolds
number considered (Re= 300).

To ensure that the solution is converged with the chosen time step 1t= 0.0030, the
latter was halved to 0.0015. This produced a variation in the body forces of less than
0.2 % at Re= 150.

A last resolution study was carried out by increasing the number of the internal
node points within each macro-element from N = 4 (×4) to N = 5 (×5), N = 6 (×6)
and N = 7 (×7), which is taken as the reference value. We found that the drag force,
the lift force and the period of oscillation differ by less than 1 % respectively for N >5
at Re= 150. At the highest Reynolds number Re= 300, the drag and Strouhal number
are well within the 0.5 % at N = 5 (×5) whereas the error in the lift force reached
2.5 %. From these results, and, considering that this study focuses mostly on a range
of Reynolds number around the transition values Rec,3D and Rec,2D and up to 160, we
can safely conclude that the mesh with 5 nodes per macro-element is converged and
use it throughout our simulations.

The point of contact between the cylinder and the wall leads to a mesh singularity,
and hence a small gap G is imposed between the cylinder and the wall. It has
been shown previously that the flow structures visualised in the experiments and
those observed numerically are in good agreement with G/d = 0.005 (Stewart et al.
2006, 2010; Rao et al. 2011), while reducing the gap ratio has little effect on flow
quantities of interest (Stewart et al. 2010) Thus a gap ratio G/d of 0.005 was used
throughout this investigation.
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(b)

(a)

FIGURE 3. View of the cylinder mesh M1: (x1,u, x1,d, y1) = (−25, 25, 50) (a) and M2:
(x2,u, x2,d, y2)= (−50, 50, 100) (b). The cylinder is placed in the middle of the x-axis, and
near the wall at a gap ratio of G/d= 0.005 in order to avoid numerical singularities from
arising. The flow is from left to right and the resolution in the vicinity and downstream
of the cylinder is increased in order to accurately capture the flow structures in the wake.

For the full 3-D nonlinear simulations, a Fourier expansion is used to represent the
spanwise dependence of the flow variables (e.g. see Karniadakis & Triantafyllou 1992;
Thompson, Hourigan & Sheridan 1996; Karniadakis & Sherwin 1999). The spanwise
dimension is set to 54d for simulations for Re > Rec,2D and 25.5d for Re < Rec,2D.
These domains were chosen to fit approximately three wavelengths of the longest-
wavelength instability mode predicted by Floquet analysis (λ∼ 8.5d and 18d for the
steady and periodic base states). The choice of such large spanwise domains was
to allow nonlinear interactions between all relevant modes as the wake evolves to a
fully saturated state. Another option would be to restrict the domain to wavelengths
corresponding to each dominant mode to look at the super-/sub-critical nature of the
each transition from a linear to a nonlinear state (but not the fully saturated state).
This could have been done, but it is not clear it would contribute much to the physical
picture. For instance, for the Mode A transition of a circular cylinder in free stream,
beyond saturation the wake evolves to allow dislocations (e.g. Williamson 1996a,b)
that cannot be represented on a single wavelength spanwise domain. Also relevant,
Karniadakis & Triantafyllou (1992) used a spanwise width that only allowed Mode B
to grow. Because of this unphysical restriction, the authors observed period doubling
as the route to a fully turbulent flow. However, this does not seem to be the situation
for the real wake, or for computations using a sufficiently wide spanwise domain
(Henderson 1997). Thus, it was decided to use a wider domain that would not put
unphysical restrictions on mode development. Typically 48 and 96 Fourier modes are
used for these simulations for the steady and periodic regimes, respectively. Since the
shortest-wavelength mode corresponds to λ' 2.5d, this corresponds to approximately
10 Fourier planes to resolve the smallest important scales that develop in the wake.
Tests with 144 Fourier modes confirm that this resolution accurately captures the wake
evolution for the Reynolds number range considered.

Table 1 reports the results from the different resolution studies mentioned above.
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Mesh Re N ×N 1t CD CL Period

M1 150 4× 4 0.0030 3.2827(−2.45) 1.48186(2.81) 17.525(−0.51)
M1 150 5× 5 0.0030 3.3631(−0.06) 1.45020(0.62) 17.612(−0.02)
M1 150 6× 6 0.0030 3.3650 1.44133 17.615

M1 300 5× 5 0.0020 3.4175(−0.12) 0.8532(2.47) 19.646(−0.13)
M1 300 6× 6 0.0020 3.4200(−0.05) 0.8364(0.46) 19.670(−0.01)
M1 300 7× 7 0.0020 3.4205(−0.03) 0.8325(−0.01) 19.671(−0.005)
M1 300 8× 8 0.0020 3.4216 0.8326 19.672

M1 150 5× 5 0.0015 3.3637(0.02) 1.45179(0.11) 17.611(−0.01)

M2 150 5× 5 0.0030 3.3977(1.03) 1.45282(0.18) 17.400(−1.20)

TABLE 1. Domain and temporal and spatial resolution study. The numbers in parentheses
show the error relative to the highest resolution (or number of nodes N) used for the
comparison. The mesh M1 has a blockage ratio of 1 % and the mesh M2 a blockage
ratio of 2 %. Most of the simulations were undertaken with mesh M2, noting typical
blockage-induced errors in the Strouhal and force coefficients of ∼2 %. The comparisons
indicate that the time-stepping error is negligible, whilst the error induced using 5 × 5
nodes/element is typically ∼1 % for a Reynolds number of 150.

3. Results
3.1. Linear stability analysis and flow transitions

Experimental studies by Taneda (1979) showed that the presence of the wall has a
stabilising effect on the flow as long as the gap ratio does not exceed a certain critical
value (Lei et al. 1999). Stewart et al. (2010) investigated the wake behind rolling
cylinders at various rotation rates α, and found that as α varies from prograde (α > 0)
to retrograde (α < 0) rolling, the critical Reynolds numbers for three-dimensional
(Rec,3D) and unsteady (Rec,2D) transitions both increase. For comparison with that
previous study, these critical Reynolds numbers were again predicted for the reference
case of α= 1 (pure rolling without slipping). These transitions and the resulting flow
states are depicted in figure 4.

3.1.1. The initial 2-D steady to 3-D steady transition
As indicated above, in contrast to the situation of a cylinder placed in an unbounded

flow, the transition to 3-D flow for a cylinder placed near a wall occurs directly from
a steady 2-D flow, similar to the situation for a backward-facing step (Barkley,
Gomes & Henderson 2002). As with that flow, its perturbation mode takes the form
of periodic cells evenly distributed along the span of the cylinder. Figure 5 shows
the perturbation velocity field projected into the plane just touching the top of the
cylinder for Re= 60 and λ/d= 11 taken when the 3-D instability begins. This clearly
shows the rotating cells associated with this instability mode. Stability analysis on
the steady base flow shows that the onset of 3-D flow first occurs at Rec,3D = 36.8
for a spanwise wavelength λc of 8.6d. Figure 6 shows that the maximum observed
growth rate saturates by Re ∼ 60, only increasing further beyond Re ∼ 150, well
beyond the onset of shedding. This is further confirmed in figure 7, where the
growth rate is reported over the entire range of Reynolds numbers and spanwise
wavelengths. The white regions in this figure represent negative growth rates and
therefore stable wakes. Growth rates that are not real and are instead composed of a
complex conjugate pair (i.e. the period of the mode is different from that of the base

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 M

on
as

h 
U

ni
ve

rs
ity

, o
n 

05
 A

ug
 2

01
7 

at
 0

1:
39

:0
8,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

7.
32

5

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2017.325


42 F. Y. Houdroge, T. Leweke, K. Hourigan and M. C. Thompson

(a)

(b)

FIGURE 4. (Colour online) Visualisation of the initial flow transitions under consideration.
The images showing 2-D flow depict the spanwise vorticity field, whereas the 3-D flow
pattern is depicted using isosurfaces of streamwise vorticity. Red and blue represent
positive and negative vorticity, respectively.

FIGURE 5. Top down view of the 3-D steady flow at Re = 60 and λ/d = 11, depicted
through the projected velocity field in the plane grazing the top of the cylinder.

flow) were only detected in the blue region comprised between 90 . Re . 150 and
5 . λ/d . 8. The base flows for this analysis were generated using a steady version
of the spectral-element code, allowing the stability to be investigated well beyond
the transition to unsteady flow. The preferred wavelength can be seen to increase
from λ= 8.6d at onset to reach values in excess of 20d at Re= 150, before suddenly
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Transition to 2-D shedding
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FIGURE 6. (a) Maximum growth rate of the most unstable mode for transition from 2-D
steady to 3-D steady flow. (b) Variation of the wavelength of the fastest growing mode
with the Reynolds number. Beyond Re∼ 150 there are two peaks in the growth rate curve
with the shorter-wavelength peak developing the higher amplitude for Re & 180.

50 100 150 200

Re

0

5

10

15

20

25

30

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

FIGURE 7. (Colour online) Contour map of the growth rate σ as a function of the
Reynolds number Re and the wavelength λ/d for the 2-D steady to 3-D transition. For
most of the domain, the dominant 3-D mode is steady, except for a small (blue) region
centred around Re= 120 and λ/d= 5 and extending to higher Reynolds numbers.

dropping back on further increasing the Reynolds number. This is associated with the
growth rate versus wavelength curves for Re & 150 developing two peaks, with the
lower-wavelength peak dominating for Re & 180.

3.1.2. Transition to 2-D unsteady flow
The transition from steady to unsteady 2-D flow occurs when the recirculation

bubble at the rear of the cylinder becomes unstable and starts to shed vortices
(figure 4b). These vortices interact with the wall through the no-slip condition,
generating secondary vorticity as they advect downstream. In turn, this secondary
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U

FIGURE 8. (Colour online) The structure of the perturbation field at Re = Rec,2D
depicted using perturbation spanwise vorticity with overlaid base flow vorticity contours
at ±0.1U/d.
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FIGURE 9. (a) Growth rate of most unstable mode from stability analysis applied to the
rolling cylinder for 506Re6 200. The lower inset shows the stability curve as it crosses
the neutral stability line. (b) Predicted Strouhal number of the perturbation field compared
to that of the saturated flow state.

vorticity is pulled away from the wall to combine with the primary generating vortex
to form a vortex pair. The self-induced velocity of the pair causes it to move upwards
and away from the wall, but because the primary vortex is stronger, the movement is
along a curved path. The essential features of this process can be seen in figure 4(b).

Figure 8 shows the form of the instability mode visualised by the perturbation
spanwise vorticity, indicating that the mode has large amplitude where the base
vorticity field is strong as well as close to the ground plane. Linear stability analysis
of the steady base flow shows that this transition, which is characterised by a
Hopf bifurcation, occurs at Rec,2D ' 88. This is shown in figure 9, which gives the
growth rate and the preferred oscillation frequency as a function of the Reynolds
number. Although not shown in the paper, it was verified that the fluctuating lift
oscillation amplitude varied as

√
(Re− Rec,2D) close to the transition, as expected for

a Hopf bifurcation. The oscillation frequency decreases with Reynolds number from
St ' 0.066 at onset to 0.054 at Re = 200. Interestingly, the frequency of the fully
saturated 2-D wake stays relatively close to the perturbation mode frequency over this
entire range. This is perhaps surprising given that the saturated periodic state deviates
considerably from the steady wake base state, but it is probably an indication that the
frequency selection is based on the separating shear-layer properties rather than the
near-wake field. Discussion on frequency selection for the related case of a cylinder
in free stream can be found in Pier (2002), Barkley (2006), Sipp & Lebedev (2007),
Leontini, Thompson & Hourigan (2010).
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FIGURE 10. (Colour online) Contour map of the dominant growth rate σ as a function
of the Reynolds number Re and the wavelength λ/d for the 2-D periodic base flow.

3.1.3. Stability of the fully developed 2-D periodic wake
Given the discussion in § 2.1, it seems likely that the initial 3-D development of

the wake at a particular Reynolds number above Rec,U = 88 will be determined by
the stability of the 2-D periodic flow. That will be tested in later sections through
direct simulations. In this section, the 3-D linear stability of the 2-D periodic base
flow is characterised first.

Beyond the transition to unsteady flow, a number of different modes contribute
to the wake becoming three-dimensional. The occurrence and growth rates of these
modes are also strongly dependent on the Reynolds number, presumably because the
structure of the time-dependent 2-D wake is also a strong function of the Reynolds
number. Figure 10 summarises the situation by showing the growth rate corresponding
to the dominant mode as a contour map over a wide range of spanwise wavelengths
and Reynolds numbers beyond Rec,2D. There are a few regions of substantial growth,
notably corresponding to λ/d∼ 4 and 8–9 covering different Reynolds number ranges.
The picture is a little more complicated than indicated by this map, with local peaks
corresponding to different mode types: synchronous modes (i.e. with the same period
as the base flow); subharmonic modes (with twice the base period); and quasi-periodic
modes (with periods different from the base period). To show this in more detail,
Floquet multiplier variations as a function of wavelength at three different Reynolds
numbers Re = 100, 130 and 160 are given in figure 11. Just above the transition at
Re = 100, the fastest growing mode, marked 1 in the figure, reaches a maximum
growth at λ ' 3.2d. This corresponds to a real or synchronous Floquet mode, i.e.
the period is the same as the base flow period. At this Reynolds number, there are
several other contributing modes with positive growth rates covering the wavelength
range studied: another real mode 2 with a wavelength of λ ∼ 6–7d, a subharmonic
mode 3 starting at λ& 8d and a quasi-periodic mode 4 for λ& 15d. These all have
strongly positive growth rates, although less than the short-wavelength mode 1. At
Re = 130, the short-wavelength mode 1 is still present, but now the most dominant

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 M

on
as

h 
U

ni
ve

rs
ity

, o
n 

05
 A

ug
 2

01
7 

at
 0

1:
39

:0
8,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

7.
32

5

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2017.325


46 F. Y. Houdroge, T. Leweke, K. Hourigan and M. C. Thompson

5 10 15 20 25 30 5 10 15 20 25 300

0.5

1.0

1.5

2.0

Stable

4
2

1

Unstable

Quasi-periodic mode

Subharmonic mode

Real modes

3

1

0

2

3

4

4

Stable

Quasi-periodic mode

Subharmonic mode

5Unstable

31

5 10 15 20 25 300

1

2

3

4

5

Real modes
Stable

Unstable

1

3

5

Subharmonic mode

(a)

(c)

(b)

FIGURE 11. Floquet multiplier variation against spanwise wavelength for the dominant
Floquet mode at each wavelength for Re= 100 (a), Re= 130 (b) and 160 (c).

mode is the subharmonic mode 2 at a wavelength of λ' 9d. The longer-wavelength
quasi-periodic mode is still present, although it gives way to another real mode at
still higher wavelengths (λ & 25d). At Re = 160, there are again several changes to
the picture. The short wavelength mode 1 and subharmonic mode 3 are still present,
with the subharmonic mode relatively much more dominant. At higher wavelengths
(λ& 15), a real mode 5 becomes more dominant than the quasi-periodic mode 4 over
that wavelength range. The fact that all these modes are amplified and they cover a
wide wavelength range suggests that the wake is likely to become chaotic quickly after
the initial growth of the most dominant mode begins to saturate. This is investigated
further using direct numerical simulations in the following section, but prior to this,
the vorticity structure of the modes is examined.

Figure 12 shows the evolution of the perturbation spanwise vorticity field for
mode 1 at Re = 100, where it is the fastest growing mode, and at Re = 160, where
it is less dominant. Especially in the lower Reynolds number case, the structure
of the perturbation field inside the newly formed and shed vortex cores clearly
shows the characteristics of elliptical instability (Bayly 1986; Pierrehumbert 1986;
Landman & Saffman 1987; Waleffe 1990; Leweke & Williamson 1998; Thompson
et al. 2001b; Kerswell 2002). In particular, the perturbation vorticity shows two lobes
of positive and negative vorticity, whose extrema align at ∼45◦ to the main axes
of the elliptically shaped vortex cores (marking regions with elliptic streamlines in
the reference frame moving with the advection velocity at the centres of these cores.
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Vortex pair formed

Elliptic instability

Elliptic instability

Cooperative elliptic instability

Elliptic instability

Invariant vorticity tube

(a) (b)

FIGURE 12. (Colour online) Evolution of the spanwise perturbation vorticity for the mode
1 of figure 11 at Re = 100 (a) and Re = 160 (b), overlaid with the base flow vorticity
contours at ±0.1U/d. The images are 1/5 of a period apart. The spatial distribution of the
instability fields show strong signs of elliptic instability of the vortex cores, as discussed
in the text.

Also importantly, the orientation of the lobes is approximately maintained as the
vortices advect downstream, allowing the perturbation to grow and allowing feedback
from one shedding cycle to the next. Although somewhat far from the idealised
cases for which the theory was developed (Waleffe 1990), for finite-sized vortices,
the preferred wavelength is dependent on the core size. Le Dizès & Laporte (2002)
showed that for Gaussian vortices under strain, the spanwise wavelength is given by
λ= 2.78a, with a the Gaussian length scale. For highly strained vortices, such as is
the case here, the appropriate length scale (a) is given by Le Dizès & Verga (2002)
as a2

= (a2
M + a2

m)/2, with aM and am corresponding to the semi-major and minor axis
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(a) (b)

FIGURE 13. (Colour online) Visualisations of the streamwise perturbation vorticity for
subharmonic mode 3 (a) and real mode 5 (b) at Re=160. These images depict streamwise
perturbation vorticity coloured contours with base flow vorticity contour line at ±0.1d/U
overlaid to highlight the locations of the vortices.

lengths, respectively. At Re = 100, figure 12 shows that the approximately invariant
vorticity tube grows in size as the vortex cores advect downstream. For the first image,
where the elliptical instability pattern is first recognisable, the length scales from the
just formed and downstream cores obtained by fitting Gaussian profiles to the major
and minor axes are '0.95d and 1.27d, giving preferred spanwise wavelengths of
2.7 and 3.5d, respectively. Figure 11 shows that Floquet analysis indicates that the
maximum growth for this mode corresponds to a wavelength of λ = 3.2d, near
the centre of the range of the theoretical prediction. At Re = 160, Floquet analysis
shows the preferred wavelength of mode 1 drops to '2.5d. This is in line with
the prediction of the more compact shed cores due to lower viscous diffusion at
the higher Reynolds number. In this case, an asymmetrical counter-rotating vortex
pair is formed before the newly formed vortex advects very far downstream. This
composite structure also shows evidence of a perturbation pattern consistent with
elliptic instability, as it advects away from the wall in an approximately circular arc.
Various studies have identified elliptic instability in an isolated counter-rotating vortex
pair (e.g. Leweke & Williamson 1997).

Figure 13 shows the perturbation streamwise vorticity structure of modes 3 and 5 at
Re= 160. Mode 3, the shorter-wavelength mode, is subharmonic, repeating every two
base flow periods. Mode 5 only becomes dominant for Re& 160. Below this Reynolds
number, a quasi-periodic mode occupying this wavelength range has a higher growth
rate. Interestingly, the amplitude distributions of these two modes appear similar.
Inside the newly forming vortex, the distributions broadly match between the two
modes, in terms of both the sign and distribution of perturbation vorticity. The
vorticity distributions within the downstream vortex pairs are also similar, but of
opposite sign, as is the case with the layer of vorticity near the ground between the
two main vortical structures.

The physical nature of the instability in this case is more difficult to discern. The
developing wake does not form a series of relatively long-lived elliptical-shaped
vortices in this case, but rather a newly formed vortex generates secondary vorticity
beneath it, which is subsequently drawn away from the boundary to form an unequal
strength counter-rotating vortex pair. The process is shown in figure 14. This indicates
that there are a number of different identifiable vortex structures and groupings that
combine to lead to the observed flow instability modes.

The evolution of the circulation in the primary and secondary vortices as they advect
downstream is shown in figure 15. The primary (clockwise) vortices that directly form
from the separating shear layer, grow quickly in strength prior to the shear layer
pinching off and releasing the vortices to move downstream. The circulation then
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FIGURE 14. (Colour online) Evolution of the spanwise wake vorticity at Re=160 showing
the formation of new vortices from the separating shear layer, generation of secondary
vorticity at the boundary and release into the wake, and the formation of counter-rotating
vortex pairs that self-propel away from the wake as the pair moves downstream. Images
are separated in time by 1/5 of a period.

slowly decays. During its initial growth and soon after its release, this primary vortex
combines with the secondary vorticity generated at the boundary, to form the vortex
pair. At a point in time when this pair becomes unambiguously defined, i.e. between
images 2 and 3 of figure 14, the ratio of circulations between the component vortices
of the pair is approximately −2 :1. So, Ryan & Sheard (2011) analysed the stability of
unequal strength Lamb–Oseen vortices, which have a Gaussian vorticity distribution,
examining how the growth rate and preferred wavelength varied with circulation
ratio. Such a system is subject to both the short-wavelength elliptic instability and
the longer-wavelength Crow instability. The results of So et al. (2011) can be used
to obtain an estimate for the most unstable wavelength. A recent review of the
Crow instability is given in Leweke, Dizès & Williamson (2016). Examining the
spanwise perturbation vorticity field of mode 5 (not shown) shows the characteristic
lobe structure of Crow instability in the vortex pair as it moves away from the
cylinder and the wall. By approximating the vorticity distributions within the pair
at formation in terms of a sum of Gaussian distributions to extract the length scale
for each vortex, together with the overall circulation ratio, a preferred wavelength
of approximately λ' 20d can be predicted from the work of So et al. (2011). This
is close to the observed preferred wavelength of mode 5 at Re = 160 of λ ' 18d.
However, in this case, the perturbation field does not grow as the vortex pair advects,
so the Crow instability of the pair alone cannot be responsible for the maintenance of
the instability mode from one cycle to the next. At best, this could suggest that the
Crow instability plays a role in wavelength selection of the overall global instability.

During the formation and evolution of the wake vortices, it is also possible to take
into account the image vortices, linked to the presence of the wall and symmetrically
located with respect to it. The near wake vortex pair and its image form a symmetric
four-vortex system, a configuration analysed previously in the context of aircraft
trailing wakes (e.g. Crouch 2005; Jacquin et al. 2005; Winckelmans et al. 2005).
The existence of short-wave (elliptic) and Crow-type long-wave instabilities was also
found in these systems. Although the identification of such systems is transitory for
this wake, is seems plausible that the Crow instability would play a role in the global
3-D instability and wavelength selection for the wake.

3.2. Saturated 3-D state
3.2.1. Computed forces

In this section the force coefficients after the flow has reached its fully saturated 3-D
state are compared with predicted force coefficients from 2-D steady and periodic
simulations. The time-mean forces computed obtained from 3-D direct numerical
simulations are in good agreement with the 2-D ones. Figure 16 shows plots of the
mean drag and lift coefficients, as defined in 2.3, versus the Reynolds number. For
Reynolds numbers up to the Hopf bifurcation leading to a periodic 2-D state, the 2-D
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FIGURE 15. (Colour online) Evolution of the circulation Γ of the primary and secondary
vortices over a shedding cycle as they form and advect downstream. Here, Re= 160.

50 100 150 2000

2
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10
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2-D periodic

3-D

2-D steady

FIGURE 16. Comparison of time-averaged body force coefficients, drag CD and lift CL,
between the two- and three-dimensional simulations for 30 6 Re 6 180. Note that beyond
Rec,2D the 2-D steady predictions shown by the filled circles are based on flows calculated
with the steady solver.

and 3-D curves are effectively indistinguishable. This is consistent with the relatively
weak effect on the wake of the steady 3-D instability even as it saturates, as shown
in figure 17. However, even beyond the transition to periodic flow, the difference
between the 2-D periodic and 3-D predictions remains small, and is limited to be
less than 5 % for the mean drag coefficient and 4 % for the lift coefficient at the
highest Reynolds number considered here of Re = 180. In this case, the saturated
3-D wake is distinctly different from the 2-D periodic wake, as is explored further
below. The figure also shows the lift and drag coefficients based on the steady flow
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(a) (b)

FIGURE 17. (Colour online) The fully developed wake state at Re = 50 visualised over
a spanwise distance of three characteristic wavelengths. The wake state is depicted using
an isosurface of the spanwise vorticity (ωz =±0.5). (a) Perspective view. (b) Side view.

for Re > Rec,2D obtained from the steady solver. These curves deviate considerably
from the other two sets as the Reynolds number increases. This is consistent with the
increasingly elongated recirculation region of the steady flow deviating further from
the near-wake vortex shedding of the 2-D periodic and 3-D flows as the Reynolds
number is increased.

Figure 18 shows the temporal evolution of the lift coefficient obtained from full
3-D simulations at Re = 60, 80, 90 and 160. The initial evolution follows the
one observed from the 2-D simulations (figure 2) until the 3-D instability grows
sufficiently to change the 2-D structure of the flow. This effect can be seen in the
temporal development of the lift coefficient: below the Hopf bifurcation at Rec,2D= 88,
the 3-D transition disturbs the otherwise constant lift coefficient at approximately
t = 400 − 600U/d (upper two plots), whilst beyond the 2-D transition, the periodic
oscillations in the curves die out at approximately t = 200 − 400U/d (bottom two
plots) as a result of the 3-D instability reaching a sufficient amplitude to substantially
alter the otherwise 2-D periodic flow.

It is of interest why the oscillations in the lift signal are substantially suppressed
once the wake reaches its saturated 3-D state. To investigate this, sectional lift
coefficient signals, i.e. the lift coefficient per unit span at a particular spanwise
position, were examined at different points across the span. Figure 19 shows the
evolution of the lift signals at two points separated by half the span width (dashed
lines) together with the mean lift signal (solid line), for Re = 160 in the saturated
state. Clearly, there is a significant variation in the local lift coefficient across the
span, indicating that the underlying 2-D vortex shedding is uncorrelated. In addition
to this, even the sectional lift coefficients are not very periodic. This is consistent
with a change from strong, regular 2-D shedding of vortices initially to a much
more disordered 3-D wake without a strong underlying 2-D periodic vortical wake
structure. Note that for these simulations, a low-level white-noise perturbation of
amplitude 10−4U was added to each velocity component at startup to accelerate the
development of the three-dimensionality.

3.2.2. Development and saturation of 3-D flow
Within the steady regime (Re< Rec,2D), the evolution to a fully evolved 3-D wake

for Re > Rec,3D leads to the 2-D spanwise vorticity isosurfaces becoming wavy in
the spanwise direction, with little alteration to the main underlying 2-D structure
of the flow. As identified above, this effect can be seen on figure 17(a), and the
extent of this deformation on figure 17(b). These predictions are consistent with
those made by Stewart et al. (2010), who in addition conducted experiments in
a water channel. Their experiments showed that the results of the experimental
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FIGURE 18. Temporal evolution of the lift coefficient from Re=60 to 160 computed from
the 3-D direct numerical simulations. The dashed ellipses show the instant at which the
3-D instability has grown sufficiently to alter the 2-D flow.

490 500 510 520 530 540 550
1.40

1.45

1.50

1.55

1.60

1.65

FIGURE 19. Evolution of the sectional lift coefficient at two spanwise locations (dashed
lines) separated by half the span width at Re = 160 in the fully saturated state. The
spanwise-averaged lift coefficient is also shown by the solid line. The period corresponding
to 2-D vortex shedding is approximately 20 units.

streaklines and of the predicted 2-D flow are in good qualitative agreement, at least
while the three-dimensionality is developing. Note that the final saturated state in
this case is weakly unsteady. For instance, at Re= 45 there is a low-level oscillation
leading to the weak shedding of vorticity into the wake, while the global 3-D structure
shown in figures 5 and 17 is maintained. For Reynolds numbers beyond the transition
to vortex shedding, which is the main focus here, direct numerical simulations of the
flow indicate that, prior to its settling into its final state, the flow initially undergoes
a rapid transition to 2-D vortex shedding, as indicated by the lift trace curves of
figure 18. The numerical method involves representing the spanwise variation through
a Fourier decomposition, hence the evolution of the spanwise modes can be easily
extracted. A convenient measure of the amplitude of each mode is provided by the
root mean square (r.m.s.) amplitude of the spanwise velocity component of each
complex Fourier mode, since that velocity component is zero prior to 3-D flow
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FIGURE 20. (Colour online) Evolution of the amplitude of spanwise Fourier modes at
different Reynolds numbers. Top row: Re = 100; bottom row: Re = 160. The panels on
the left show the evolution of the three dominant wavelengths as predicted by Floquet
analysis, and those on the right show the evolution of the amplitudes corresponding to the
first 48 modes. The simulations are started impulsively, with a low-level white noise to
accelerate the development of the three-dimensionality. Measured slopes of the evolution
curves in the linear regime give estimated growth rates (σ̂ ) in agreement with growth rate
predictions from Floquet analysis given in figure 11.

development. Specifically, the evolution of the modal amplitudes (An), computed as a
r.m.s. spatial average over all 2-D node points (Nxy) of the moduli of the z-velocity
complex Fourier coefficients (an) corresponding to mode index n, i.e.

An(t)=

√√√√( 1
Nxy

Nxy∑
i=1

∣∣ai
n(t)
∣∣2), (3.1)

are shown in figure 20 for Re= 100 and Re= 160. The two figures in the left column
show the development of modes corresponding to key wavelengths identified by the
global stability analysis. Indeed, after an initial period over which the dominant mode
for each wavelength emerges, the growth rates as measured by the slopes of the
curves over many oscillation periods have values consistent with the linear stability
analysis predictions. At some point in time, the modes grow sufficiently to begin to
saturate nonlinearly, leading the flow to reach its asymptotic state. After saturation,
the figures in the right column show that the final state is influenced by many modes
of different wavelengths, suggesting a rapid transition to fully chaotic flow. Figure 21
shows time-mean r.m.s. amplitudes of each Fourier mode taken over the last 100
time units (in the fully saturated state) at (a) Re= 100 and (b) Re= 160. Here, the
horizontal axis is the non-dimensional wavenumber kd. These spectra can be compared
with figure 21(c) at Re = 45, where the saturated state shows a single spectral peak
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FIGURE 21. Time-mean amplitudes of saturated Fourier modes corresponding to the
spanwise velocity component against dimensionless wavenumber kd for (a) Re= 100 and
(b) Re= 160. These are taken over the 100 time units after the asymptotic state is reached.
The right-hand image (c) shows the final mode amplitude distribution for Re= 45, well
below the transition to the periodic state.

corresponding to kd= 0.74 (or λ/d= 8.5) together with harmonics accounting for the
distortion of the saturated final state from the pure sinusoidal linear instability mode.
For the two higher Reynolds number cases, the spectra are continuous as a result
of the nonlinear interactions between modes, and this is indicative of a chaotic final
wake state. Indeed, the modes corresponding to the dominant linear instability mode
numbers do not dominate the spectra at saturation.

Isosurface plots taken at key points in the flow development help elucidate the
wake development. Figure 22(a) shows an isosurface of Q = 0.01 at t = 350d/U.
The Q-criterion is a vortex identification method defined initially by Hunt, Wray
& Moin (1988). This isosurface is merged with isosurfaces of positive/negative
streamwise vorticity to highlight the dominant spanwise mode at a time when the
three-dimensionality is beginning to modify the otherwise 2-D wake structure. In
this case, Re = 100. The wavelength of the streamwise vorticity pattern extracted
from this image is consistent with the short-wavelength mode 1 instability prediction
(figure 22a) from stability analysis. Soon after, the wake develops nonlinearly, with a
typical snapshot shown in figure 22(b).

At a higher Reynolds number of Re= 160, the development is somewhat different.
Figure 23 shows a sequence of wake states from the time that three-dimensionality is
beginning to develop. The first three images show the evolution at three consecutive
shedding cycles. The three-dimensionality develops quickly, with the spanwise
wavelength of the perturbation corresponding to that of mode 3 of figure 11(c).
The second image shows substantial distortion of the previously shed 2-D vortex
pair, whilst the third image, one cycle later, shows that the subsequently shed vortex
pair is virtually destroyed. The final image is a plot taken a few cycles later, after
the final asymptotic state is reached. This is similar to the final state at Re = 100
shown in figure 22, except it shows an even more complex finer-scale structure. The
previous 2-D periodic wake state is no longer visible at all.

4. Conclusions
The stability analysis of the steady 2-D flow past a cylinder rolling at constant

speed along a rigid surface has shown that the key transitions to steady 3-D flow
and to periodic vortex shedding occur at Rec,3D = 36.8 and Rec,2D = 88, respectively.
These results are mainly confirmation of findings from a previous study by Stewart
et al. (2010). However, the main emphasis of this paper is concerned with 3-D
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U

Top down view

U

Top down view

U

Top down view

(a)

(b) (c)

FIGURE 22. (Colour online) Evolution of the wake at Re= 100 from direct simulations.
(a) Isosurface of Q = 0.01 (blue) highlighting the predominantly 2-D vortices, with
isosurfaces of streamwise vorticity at ωx =±0.1 (red/yellow) superimposed. At this time
(t=350d/U), the 3-D instability modes have grown sufficiently to begin to affect the wake.
(b,c) At t= 500d/U, after the flow has fully saturated. The wake is complex and chaotic
with many 3-D wavelength components contributing. The isosurface corresponding to Q=
0.01 is plotted in panel (b) and the isosurfaces of streamwise vorticity at ωx =±0.1U/d
in panel (c).

wake development in a more realistic configuration, i.e. after a cylinder starts rolling
impulsively at a constant velocity, and how this evolution is related to stability theory.

Two main cases can be distinguished. The first is when the Reynolds number is
lower than the critical Reynolds number leading to 2-D transition (Rec,2D) and above
the critical Reynolds number for 3-D steady transition (Rec,3D). In this case, the
asymptotic flow state is a 3-D flow that is not too far from the prediction based on
assuming 2-D flow. Indeed, the drag and lift coefficients are practically unaffected by
the three-dimensionality. When the Reynolds number is close to Rec,2D, the initially
stationary flow develops a few cycles of shedding prior to settling towards a steady
state.

The second case is observed for Reynolds numbers above Rec,2D. After an impulsive
start, the flow undergoes a rapid transition to 2-D periodic shedding. Within a few
cycles, e.g. approximately three at Re= 90 and two at Re= 160, the wake evolves to
be close to the periodic state predicted by 2-D simulations. It then continues in this
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FIGURE 23. (Colour online) Stages in the evolution of the wake at Re= 160 as depicted
by isosurfaces of Q = 0.01. The first three images show the wake structure for three
consecutive cycles just after the three-dimensionality is starting to modify the flow. The
final image is a typical image after the flow has reached its asymptotic state.

near-periodic state for several cycles, depending on the background noise level. For the
cases considered here, this period of evolution was approximately 15 and 10 cycles
at Re = 90 and 160, respectively. Stability analysis of the 2-D periodic state, which
has not been undertaken previously, then determines the subsequent development of
the wake three-dimensionality. At Re= 100, the wake appears to initially undergo a
short-wavelength instability (mode 1 shown in figure 8a), consistent with an elliptic
instability of the shed vortex cores. At longer times, many more spanwise modes
come into play and interact nonlinearly, leading to a chaotic final flow state. At a
higher Reynolds number of Re= 160, the initial development of three-dimensionality
is different. Here, mode 3 of figure 8(c) is the mode to break two-dimensionality.
Again, the wake undergoes a rapid transition to a chaotic final state soon afterwards.

With the noise levels used to initiate the 3-D flow development in the 3-D
simulations, the fully saturated wake states take approximately 400 and 200
non-dimensional time units to develop, for Re = 90 and 160, respectively. These
values are equivalent to the number of diameters the cylinder rolls whilst maintaining
a 2-D state. Although experimental noise levels are likely to be higher, it is still an
indication that, after an impulsive start of the cylinder, a 2-D periodic flow state will
be maintained for a considerable rolling distance prior to the evolution to a complex
3-D wake. The two- and three-dimensional simulations also show that the mean lift
and drag coefficients of the fully saturated 3-D flow are very close to predictions
based on 2-D simulations.

It is interesting to speculate whether a similar scenario would apply to a sphere
rolling at constant velocity along a wall. In that case, even in free stream, a non-
axisymmetric steady transition occurs prior to the periodic transition. The presence
of the wall seems likely to cause the premature generation of shedding on impulsive
startup, bypassing the slow transition associated with a Hopf bifurcation of a steady
flow. However, we will leave this as an open question at this stage.

The numerical model here is essentially an infinite 2-D cylinder forced to roll at
constant speed. End effects may play a strong part in the wake evolution, just as it
can with the flow past a cylinder away from a boundary. Additionally, if the cylinder
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is free to roll without any constraints on its movement and velocity, vortex-induced
vibrations are likely to occur with an unsteady wake. The simulations and results
presented in this paper aim to provide a reference study for the idealised case, and
constitute an essential element of an ongoing study concerning the fluid–structure
interaction of uniformly and freely rolling bodies translating along a wall.
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